Computing

AVELA has created many projects dedicated to learning HTML and Python!

Check it out!

Engineering

The AVELA Team has enhanced many students' hands-on experinces through many creative engineering projects.

Check it out!

Science

AVELA's projects covers a broad spectrum of subjects to tailor to the needs of the class!

Check it out!

AVELA's Projects

Computing

Coding a Smart Arcade Game Player!

This activity exposes students to 1970’s arcade games, letting them enjoy playing those games before asking the students to define states for these games. This will expose them to the important mathematical and coding concept of defining real world situations using a limited number of variables that define each state of that real world situation (i.e. in a basketball game the state of the game could be defined by each team’s score). Students also get exposed to basic Python coding concepts that they can use to learn other coding languages. By learning how to code, students will also be learning the basics to logical thinking and algebra. Most importantly, students will be exposed to Machine learning, which is a form of Artificial Intelligence where the computer uses various algorithms to create and improve upon a list of actions using data, neural nets, and state machines. A lot of these concepts are very complex and take time to understand in depth, so we will be focusing on the state machine concept. To do this we will have the students explore their own learning to get them to realize that machines learn similarly to themselves. Through trial and error, machines learn to optimize their behavior, which results in very interesting solutions to a lot of problems!

ping pong

Coding Fractals!

Students learn about geometric patterns called fractals, like the Sierpinski triangle and fractal tree. Initially, they learn about the beautiful applications of geometric properties that are found in nature. Students also handcraft a fractal out of paper, and visualize various fractals using an online Python IDE. The students learn how software can be a powerful tool for visualizing geometric patterns that are too tedious to handcraft. At the end, students design their own fractal using online software.

group picture
group picture

Fun with Sound-usoidal Waves

In a setting where a lot of UW summer programs were canceled, AVELA members created the online activity Fun with Sound consisting of programming through Python on Google Colaboratory. Throughout the process, the Math Academy group first created paper airplanes and manually calculated the velocities for some throws. Then, they learned the basics of programming using Python to compute the repetitive math and graph their results. Then, they applied trigonometry to create sinusoidal equations to represent the sound waves later used in the main Fun with Sound activity. The students had the opportunity to apply their learning and create their own graphs and songs.

Introduction to Website Coding (HTML)

The UW’s iSchool led a day long event for 140 local high school students filled with various workshops. AVELA members taught a 30 minute coding activity to groups of 30 students at a time using the following app: ⁠SoloLearn: Learn to Code⁠Education. During the activity, we guided the students through some basic HTML commands that print texts, images, and other graphics to the screen.

html

Engineering

Analog Heart-Rate Monitor

With a certain push for digital circuits and hardware in consumer devices, the need for analog electronics is oftentimes misunderstood and underappreciated. In this program, we seek to develop an analog heart rate monitor circuit, one completely independent of digital screens and components. Students will learn the fundamentals necessary to build such a circuit, beginning with Ohm’s Law, Kirchoff’s Voltage and Current Laws, as well as filter design with operational amplifiers. By the end of the program, students will be able to simulate and design a working heart rate monitor circuit using completely analog components.

ping pong

Portable Door Alarm System

Throughout the course, students learn about several circuit components through a series of mini-projects . By applying mathematical concepts and basic circuitry techniques, the students utilize circuit components like LEDs, servos, keypads, distance sensors, and more to accomplish tasks like ringing a buzzer and making a servo-based timer. The overall Portable Door Alarm System brings all of the mini-projects together so that the students are able to create their own alarm system.

lock box

Arduino Circuit Drop

This year’s Math Academy group got the chance to do an egg drop activity, with a pinch of electrical engineering sprinkled in. Instead of an egg, the students helped to create an impact mitigation device for a very sensitive circuit that measures impact force. The circuit consists of an Arduino Nano for communicating between different components, an accelerometer for measuring the deceleration of the structure's impact, a lithium ion battery to power the device, and a microSD reader to save data to for later calculations. The purpose of this video is to highlight some of the creative thoughts that these bright young engineers put into their designs, as well as to showcase some of their results.

Arduino Circuit Toss

For this activity, the students used Arduino Nanos and SparkFun's BME280 pressure sensors to code a circuit that calculated the approximate altitude of the sensor. In order to allow the campers to throw their circuit as high as they wanted, we 3D printed an encasing for the circuit that fit inside a 3D printed ball we designed. This allowed the campers to throw the ball to whatever height they wanted, then attempt to catch the ball using one of the parachutes we supplied. The purpose of this activity was to show the campers how they could apply the physics’ concepts they were learning in class, coupled with some coding/circuitry tools, to gather real information about the world.

Tinker aCADemy - 3D Modeling

Throughout the course, students learned about properties of geometric shapes ranging from surface area to volume. The tedious creation of handmade models with paper motivated them to use computational tools and learn how to build 3D geometrical shapes with CAD softwares. They designed their own project within given constraints and later used Tinkercad to model what they created.

tinker pic
tinker pic

Science

What Happened to my lungs?!

Due to the Covid-19 pandemic, many scientists narrowed their studies to respiratory illnesses and how it can affect or be affected by other health conditions. Students build a 3-D model of the lungs to better observe the effects of respiratory illnesses on the short and long-term health of the lungs. Students will be able to physically touch and see how various conditions can affect the lungs’ ability to collapse and decay. This activity introduces the specific effect of Covid-19 and other major respiratory illnesses on the lungs using items easily found at home (Balloons, Water bottles, Straws, etc.).

ping pong