Parsing Speech: A Neural Approach to Integrating Lexical and Acoustic-Prosodic Information

Trang Tran*¹, Shubham Toshniwal*², Mohit Bansal³, Kevin Gimpel², Karen Livescu², Mari Ostendorf¹

¹Electrical Engineering, University of Washington
²Toyota Technological Institute at Chicago
³Computer Science, UNC Chapel Hill

*Equal Contribution
Challenges in Parsing Speech

• Voice-based HCI more widely used → parsing speech (and NLP for speech) more important

• Speech vs. text:
 • Speech lacks clues for conventional parsing (punctuation, case, …)
 • ASR (and human) errors in transcribed speech are common
 • Speech has disfluent components (filled pauses, [edits], …)

Wall Street Journal:
Pierre Vinken, 61 years old, will join the board as a non executive director Nov. 29.

Switchboard:
and uh [we were] i was fortunate in that i was personally acquainted with the uh people who uh ran the nursing home in our little hometown
Prosody and Parsing

- Prosody
 - Symbolic level: phrase boundaries (constituents) and prominence (stress, pitch accent)
 - Acoustic cues: pauses, word/syllable lengthening, pitch (f0) contour, energy, voice quality

- Prosodic information in the acoustic signal can help parsing
 - Prosodic cues signal disfluencies (interruption points)
 - Prosodic boundaries align with constituent boundaries (Grosjean et al., 1979)
 - Boundary and prominence help resolve ambiguities (Price et al., 1991)

Mary knows many languages you know

Mary knows many languages **you** know
Prosody and Parsing

• Prosody
 • Symbolic level: phrase boundaries (constituents) and prominence (stress, pitch accent)
 • Acoustic cues: pauses, word/syllable lengthening, pitch (f0) contour, energy, voice quality

• Prosodic information in the acoustic signal can help parsing
 • Prosodic cues signal disfluencies (interruption points)
 • Prosodic boundaries align with constituent boundaries (Grosjean et al., 1979)
 • Boundary and prominence help resolve ambiguities (Price et al., 1991)

Mary knows many languages, you know

Mary knows many languages you know
Prosody and Parsing

• Prosody
 • Symbolic level: phrase boundaries (constituents) and prominence (stress, pitch accent)
 • Acoustic cues: pauses, word/syllable lengthening, pitch (f0) contour, energy, voice quality

• Prosodic information in the acoustic signal can help parsing
 • Prosodic cues signal disfluencies (interruption points)
 • Prosodic boundaries align with constituent boundaries (Grosjean et al., 1979)
 • Boundary and prominence help resolve ambiguities (Price et al., 1991)

Mary knows many languages you know

Mary knows many languages you know
Using Prosody

• Prior work:
 • Most gains were obtained in unknown sentence boundary setting (Kahn and Ostendorf, 2012)
 • Need expensive human annotations (Kahn et al., 2005; Hale et al., 2006; Dreyer and Shafran, 2007)
 • Direct use of acoustic cues and sentence-internal prosody seemed to hurt parsing (Gregory et al., 2004)

• Our contributions:
 • Framework for integrating acoustic-prosodic features without prosodic labels
 • Gains in using sentence-internal prosody: disfluent sentences, reduced attachment errors
 • Assessment of transcription error effects on utility of prosody
Task and Model Overview

- Encoder-decoder with attention (Vinyals et al., 2015)
 - Input: word-level features \(x_i = [e_i, (s_i, \phi_i)] \)
 - \(e_i \): word embeddings
 - \(\phi_i \): pause and duration features
 - \(s_i \): f0/E features
 - Output: linearized parse symbols \(y_t \)
- Location-aware attention (Chorowski et al., 2015)
- CNN-learned pitch/energy features \(s_i \)
Attention Mechanism

• Standard attention (global/content-only):

\[c_t = \sum_{i=1}^{T_s} \alpha_{i,t} h_i \]

\[\alpha_t = \text{softmax}(u_t) \]

\[u_{i,t} = f(h_i, d_t) \]

• Convolutional attention (content+location):

(Chorowski et al., 2015)

\[u_{i,t} = f(h_i, d_t, F \ast \alpha_{t-1}) \]
CNN-learned Acoustic-Prosodic Features

- Pause (p)
- Before and after
- Bin and embed
- Word duration (d)
- Pitch and energy contours (f0/E)
 - Learned via CNN
 - Frame-level filters capturing sub-word, word, word boundary context

Kaldi
Data and Metrics

- **Data**
 - Switchboard NXT (Calhoun et al., 2010)
 - 642 telephone conversations
 - 100K sentences, 14K vocabulary
- **Metrics**
 - Parseval F1 (label and span)
 - Disfluency F1 (detection)
• Location-aware attention (CL-attn) overcomes problems of baseline in handling disfluencies
• Use CL-attn for the rest of the experiments
• Adding acoustic-prosodic features helps
 • Pause and f0/E contribute most of the gain
Comparison with Previous Work (test set)

<table>
<thead>
<tr>
<th>Model</th>
<th>Text-only</th>
<th>Text+Prosody</th>
<th>Rel. (1-F) reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kahn et al., 2005</td>
<td>86.4</td>
<td>86.6</td>
<td>+1.5%</td>
</tr>
<tr>
<td>Hale et al., 2006</td>
<td>71.2</td>
<td>71.1</td>
<td>-0.3%</td>
</tr>
<tr>
<td>CL-attn</td>
<td>88.0</td>
<td>88.5</td>
<td>+4.2%</td>
</tr>
</tbody>
</table>

- Slightly different training data and experiment settings → compare relative performance
- We are gaining more over text-only baselines
- Results (text vs. text + prosody) are statistically significant (p-value < 0.02)
Analysis: Sentence Types

Prosody helps in longer sentences

Prosody helps in disfluent sentences
Analysis: Parse Error Types

- Error classifications from Berkeley Parser Analyzer (Kummerfeld et al., 2012)
- Prosody helps most in reducing attachment errors
Analysis: Parse Error Example

Text-only Parser

PROSODY (PAUSE) HELPED AVOID ATTACHMENT ERROR

Text+Prosody Parser

PROSODY (PAUSE) HELPED AVOID ATTACHMENT ERROR
Analysis: Transcription Error Effects

- Prosody seems to hurt in fluent sentences, what is going on?
- Compare parser performance on sentences with and without transcription errors
- Errors result in inconsistent prosody features

<table>
<thead>
<tr>
<th># Fluent sentences</th>
<th>Prosody helped</th>
<th>Prosody “hurt”</th>
</tr>
</thead>
<tbody>
<tr>
<td>with errors</td>
<td>57</td>
<td>82</td>
</tr>
<tr>
<td>no errors</td>
<td>270</td>
<td>269</td>
</tr>
</tbody>
</table>

Treebank (inaccurate) transcription

MS-State (accurate) transcription
Conclusion

• Contributions:
 • Framework for automatically integrating acoustic-prosodic features, which previously was a challenge
 • For sentence-internal structure, prosody helps:
 • in disfluent and long sentences
 • in reducing attachment errors
 • Gain from prosody has been underestimated due to transcription errors

• Future:
 • Extend to other parsing frameworks (dependency) and systems (transition-based)
 • Assess impact with unknown sentence boundaries and ASR errors
 • Transfer parses to accurate transcripts

Thank you!
Backup Slides
Full model details

\[c_t = \sum_{i=1}^{T_s} \alpha_{ti} h_i \quad \alpha_t = \text{softmax}(u_t) \]

\[u_{it} = v^T \tanh(W_1 h_i + W_2 d_t + b_0) \]

\[u_{it} = v^T \tanh(W_1 h_i + W_2 d_t + W_f f_{ti} + b_0) \]
Data and Metrics (details)

• Data
 • Switchboard NXT (Calhoun et al., 2010)
 • 642 conversations
 • Train/Dev/Test splits follow previous work (e.g. Charniak and Johnson, 2001)
 • Vocabulary: 14k

• Metrics
 • Standard Parseval F1
 • Flattened EDIT Parseval F1

<table>
<thead>
<tr>
<th>Split</th>
<th># sentences</th>
<th># tokens</th>
</tr>
</thead>
<tbody>
<tr>
<td>Train</td>
<td>97,113</td>
<td>729,252</td>
</tr>
<tr>
<td>Dev</td>
<td>5,769</td>
<td>50,445</td>
</tr>
<tr>
<td>Test</td>
<td>5,901</td>
<td>48,625</td>
</tr>
</tbody>
</table>
Pause duration distribution

![Pause duration distribution chart]

- X-axis: Pause Duration (in sec.)
- Y-axis: Probability

The chart illustrates the probability distribution of pause durations, with a peak at 0 seconds and a gradual decrease as the duration increases.
Preprocessing

Original parse tree

\[
\begin{align*}
(S & \rightarrow \text{FRAG} \\
& \quad \rightarrow \text{INTJ} \quad \text{UH} \quad \text{uh} \\
& \quad \quad \rightarrow \text{PP} \\
& \quad \quad \quad \rightarrow \text{IN} \quad \text{about} \\
& \quad \quad \quad \quad \rightarrow \text{NP} \quad \text{PRP} \quad \text{yourself}
\end{align*}
\]

Linearized parse tree

\[
(S \ (\text{FRAG} \ (\text{INTJ} \ (\text{UH} \ \text{uh})) \ (\text{PP} \ (\text{IN} \ \text{about}) \ (\text{NP} \ (\text{PRP} \ \text{yourself})))))
\]

Final POS-normalized linearized parse tree

\[
(S \ (\text{FRAG} \ (\text{INTJ} \ \text{XX}) \ (\text{PP} \ \text{XX} \ (\text{NP} \ \text{XX}))))
\]
Another NP attachment error example

Text-only

Text + prosody
The county is mostly hispanic.

I'm in the minorities.
Results in different format

Test Set

Ablations
More Transcription Error Examples

• Parse structure changes:
 and because <uh> like if your spouse died <all of a sudden you be> all alone it ‘d be nice to go someplace with people similar to you to have friends

• Disfluent → Fluent:
 uh <i have had> my wife ‘s picked up a couple of things saying uh boy if we could refinish that ‘d be a beautiful piece of furniture

• Gains using prosody obscured by transcription errors
• Effect is statistically significant (p-value < 0.05)
Analysis: Transcription Error Effects

<table>
<thead>
<tr>
<th># Fluent Sentences</th>
<th>Prosody helped</th>
<th>Prosody “hurt”</th>
</tr>
</thead>
<tbody>
<tr>
<td>with errors</td>
<td>57</td>
<td>82</td>
</tr>
<tr>
<td>no errors</td>
<td>270</td>
<td>269</td>
</tr>
</tbody>
</table>

→ Parse structure changes

uh uh <i have had> my wife’s picked up a couple of things saying uh boy if we could refinish that’d be a beautiful piece of furniture

Treebank (inaccurate) transcription

MS-State (accurate) transcription