
CSSS 569 Visualizing Data and Models
Lab 1: Supplemental R resource

Ramses Llobet

Department of Political Science, UW

January 10, 2025

Useful R resources

▶ R

▶ R for Data Science (Grolemund and Wickham 2016)
▶ Quantitative Social Science : An Introduction (Imai 2017)
▶ DataCamp: https://www.datacamp.com
▶ R cheat sheets: https://rstudio.com/resources/cheatsheets/

▶ R Markdown

▶ R Markdown: The Definitive Guide (Xie, Allaire, and
Grolemund 2019)

▶ Data visualization

▶ Data Visualization: A Practical Introduction (Healy 2018)
▶ Fundamentals of Data Visualization: A Primer on Making

Informative and Compelling Figures (Wilke 2019)

▶ Others

▶ Stack Overflow: https://stackoverflow.com
▶ TidyTuesday Project:

https://github.com/rfordatascience/tidytuesday

https://www.datacamp.com
https://rstudio.com/resources/cheatsheets/
https://stackoverflow.com
https://github.com/rfordatascience/tidytuesday

Useful R resources

▶ R
▶ R for Data Science (Grolemund and Wickham 2016)

▶ Quantitative Social Science : An Introduction (Imai 2017)
▶ DataCamp: https://www.datacamp.com
▶ R cheat sheets: https://rstudio.com/resources/cheatsheets/

▶ R Markdown

▶ R Markdown: The Definitive Guide (Xie, Allaire, and
Grolemund 2019)

▶ Data visualization

▶ Data Visualization: A Practical Introduction (Healy 2018)
▶ Fundamentals of Data Visualization: A Primer on Making

Informative and Compelling Figures (Wilke 2019)

▶ Others

▶ Stack Overflow: https://stackoverflow.com
▶ TidyTuesday Project:

https://github.com/rfordatascience/tidytuesday

https://www.datacamp.com
https://rstudio.com/resources/cheatsheets/
https://stackoverflow.com
https://github.com/rfordatascience/tidytuesday

Useful R resources

▶ R
▶ R for Data Science (Grolemund and Wickham 2016)
▶ Quantitative Social Science : An Introduction (Imai 2017)

▶ DataCamp: https://www.datacamp.com
▶ R cheat sheets: https://rstudio.com/resources/cheatsheets/

▶ R Markdown

▶ R Markdown: The Definitive Guide (Xie, Allaire, and
Grolemund 2019)

▶ Data visualization

▶ Data Visualization: A Practical Introduction (Healy 2018)
▶ Fundamentals of Data Visualization: A Primer on Making

Informative and Compelling Figures (Wilke 2019)

▶ Others

▶ Stack Overflow: https://stackoverflow.com
▶ TidyTuesday Project:

https://github.com/rfordatascience/tidytuesday

https://www.datacamp.com
https://rstudio.com/resources/cheatsheets/
https://stackoverflow.com
https://github.com/rfordatascience/tidytuesday

Useful R resources

▶ R
▶ R for Data Science (Grolemund and Wickham 2016)
▶ Quantitative Social Science : An Introduction (Imai 2017)
▶ DataCamp: https://www.datacamp.com

▶ R cheat sheets: https://rstudio.com/resources/cheatsheets/
▶ R Markdown

▶ R Markdown: The Definitive Guide (Xie, Allaire, and
Grolemund 2019)

▶ Data visualization

▶ Data Visualization: A Practical Introduction (Healy 2018)
▶ Fundamentals of Data Visualization: A Primer on Making

Informative and Compelling Figures (Wilke 2019)

▶ Others

▶ Stack Overflow: https://stackoverflow.com
▶ TidyTuesday Project:

https://github.com/rfordatascience/tidytuesday

https://www.datacamp.com
https://rstudio.com/resources/cheatsheets/
https://stackoverflow.com
https://github.com/rfordatascience/tidytuesday

Useful R resources

▶ R
▶ R for Data Science (Grolemund and Wickham 2016)
▶ Quantitative Social Science : An Introduction (Imai 2017)
▶ DataCamp: https://www.datacamp.com
▶ R cheat sheets: https://rstudio.com/resources/cheatsheets/

▶ R Markdown

▶ R Markdown: The Definitive Guide (Xie, Allaire, and
Grolemund 2019)

▶ Data visualization

▶ Data Visualization: A Practical Introduction (Healy 2018)
▶ Fundamentals of Data Visualization: A Primer on Making

Informative and Compelling Figures (Wilke 2019)

▶ Others

▶ Stack Overflow: https://stackoverflow.com
▶ TidyTuesday Project:

https://github.com/rfordatascience/tidytuesday

https://www.datacamp.com
https://rstudio.com/resources/cheatsheets/
https://stackoverflow.com
https://github.com/rfordatascience/tidytuesday

Useful R resources

▶ R
▶ R for Data Science (Grolemund and Wickham 2016)
▶ Quantitative Social Science : An Introduction (Imai 2017)
▶ DataCamp: https://www.datacamp.com
▶ R cheat sheets: https://rstudio.com/resources/cheatsheets/

▶ R Markdown

▶ R Markdown: The Definitive Guide (Xie, Allaire, and
Grolemund 2019)

▶ Data visualization

▶ Data Visualization: A Practical Introduction (Healy 2018)
▶ Fundamentals of Data Visualization: A Primer on Making

Informative and Compelling Figures (Wilke 2019)

▶ Others

▶ Stack Overflow: https://stackoverflow.com
▶ TidyTuesday Project:

https://github.com/rfordatascience/tidytuesday

https://www.datacamp.com
https://rstudio.com/resources/cheatsheets/
https://stackoverflow.com
https://github.com/rfordatascience/tidytuesday

Useful R resources

▶ R
▶ R for Data Science (Grolemund and Wickham 2016)
▶ Quantitative Social Science : An Introduction (Imai 2017)
▶ DataCamp: https://www.datacamp.com
▶ R cheat sheets: https://rstudio.com/resources/cheatsheets/

▶ R Markdown
▶ R Markdown: The Definitive Guide (Xie, Allaire, and

Grolemund 2019)

▶ Data visualization

▶ Data Visualization: A Practical Introduction (Healy 2018)
▶ Fundamentals of Data Visualization: A Primer on Making

Informative and Compelling Figures (Wilke 2019)

▶ Others

▶ Stack Overflow: https://stackoverflow.com
▶ TidyTuesday Project:

https://github.com/rfordatascience/tidytuesday

https://www.datacamp.com
https://rstudio.com/resources/cheatsheets/
https://stackoverflow.com
https://github.com/rfordatascience/tidytuesday

Useful R resources

▶ R
▶ R for Data Science (Grolemund and Wickham 2016)
▶ Quantitative Social Science : An Introduction (Imai 2017)
▶ DataCamp: https://www.datacamp.com
▶ R cheat sheets: https://rstudio.com/resources/cheatsheets/

▶ R Markdown
▶ R Markdown: The Definitive Guide (Xie, Allaire, and

Grolemund 2019)
▶ Data visualization

▶ Data Visualization: A Practical Introduction (Healy 2018)
▶ Fundamentals of Data Visualization: A Primer on Making

Informative and Compelling Figures (Wilke 2019)
▶ Others

▶ Stack Overflow: https://stackoverflow.com
▶ TidyTuesday Project:

https://github.com/rfordatascience/tidytuesday

https://www.datacamp.com
https://rstudio.com/resources/cheatsheets/
https://stackoverflow.com
https://github.com/rfordatascience/tidytuesday

Useful R resources

▶ R
▶ R for Data Science (Grolemund and Wickham 2016)
▶ Quantitative Social Science : An Introduction (Imai 2017)
▶ DataCamp: https://www.datacamp.com
▶ R cheat sheets: https://rstudio.com/resources/cheatsheets/

▶ R Markdown
▶ R Markdown: The Definitive Guide (Xie, Allaire, and

Grolemund 2019)
▶ Data visualization

▶ Data Visualization: A Practical Introduction (Healy 2018)

▶ Fundamentals of Data Visualization: A Primer on Making
Informative and Compelling Figures (Wilke 2019)

▶ Others

▶ Stack Overflow: https://stackoverflow.com
▶ TidyTuesday Project:

https://github.com/rfordatascience/tidytuesday

https://www.datacamp.com
https://rstudio.com/resources/cheatsheets/
https://stackoverflow.com
https://github.com/rfordatascience/tidytuesday

Useful R resources

▶ R
▶ R for Data Science (Grolemund and Wickham 2016)
▶ Quantitative Social Science : An Introduction (Imai 2017)
▶ DataCamp: https://www.datacamp.com
▶ R cheat sheets: https://rstudio.com/resources/cheatsheets/

▶ R Markdown
▶ R Markdown: The Definitive Guide (Xie, Allaire, and

Grolemund 2019)
▶ Data visualization

▶ Data Visualization: A Practical Introduction (Healy 2018)
▶ Fundamentals of Data Visualization: A Primer on Making

Informative and Compelling Figures (Wilke 2019)

▶ Others

▶ Stack Overflow: https://stackoverflow.com
▶ TidyTuesday Project:

https://github.com/rfordatascience/tidytuesday

https://www.datacamp.com
https://rstudio.com/resources/cheatsheets/
https://stackoverflow.com
https://github.com/rfordatascience/tidytuesday

Useful R resources

▶ R
▶ R for Data Science (Grolemund and Wickham 2016)
▶ Quantitative Social Science : An Introduction (Imai 2017)
▶ DataCamp: https://www.datacamp.com
▶ R cheat sheets: https://rstudio.com/resources/cheatsheets/

▶ R Markdown
▶ R Markdown: The Definitive Guide (Xie, Allaire, and

Grolemund 2019)
▶ Data visualization

▶ Data Visualization: A Practical Introduction (Healy 2018)
▶ Fundamentals of Data Visualization: A Primer on Making

Informative and Compelling Figures (Wilke 2019)
▶ Others

▶ Stack Overflow: https://stackoverflow.com
▶ TidyTuesday Project:

https://github.com/rfordatascience/tidytuesday

https://www.datacamp.com
https://rstudio.com/resources/cheatsheets/
https://stackoverflow.com
https://github.com/rfordatascience/tidytuesday

Useful R resources

▶ R
▶ R for Data Science (Grolemund and Wickham 2016)
▶ Quantitative Social Science : An Introduction (Imai 2017)
▶ DataCamp: https://www.datacamp.com
▶ R cheat sheets: https://rstudio.com/resources/cheatsheets/

▶ R Markdown
▶ R Markdown: The Definitive Guide (Xie, Allaire, and

Grolemund 2019)
▶ Data visualization

▶ Data Visualization: A Practical Introduction (Healy 2018)
▶ Fundamentals of Data Visualization: A Primer on Making

Informative and Compelling Figures (Wilke 2019)
▶ Others

▶ Stack Overflow: https://stackoverflow.com

▶ TidyTuesday Project:
https://github.com/rfordatascience/tidytuesday

https://www.datacamp.com
https://rstudio.com/resources/cheatsheets/
https://stackoverflow.com
https://github.com/rfordatascience/tidytuesday

Useful R resources

▶ R
▶ R for Data Science (Grolemund and Wickham 2016)
▶ Quantitative Social Science : An Introduction (Imai 2017)
▶ DataCamp: https://www.datacamp.com
▶ R cheat sheets: https://rstudio.com/resources/cheatsheets/

▶ R Markdown
▶ R Markdown: The Definitive Guide (Xie, Allaire, and

Grolemund 2019)
▶ Data visualization

▶ Data Visualization: A Practical Introduction (Healy 2018)
▶ Fundamentals of Data Visualization: A Primer on Making

Informative and Compelling Figures (Wilke 2019)
▶ Others

▶ Stack Overflow: https://stackoverflow.com
▶ TidyTuesday Project:

https://github.com/rfordatascience/tidytuesday

https://www.datacamp.com
https://rstudio.com/resources/cheatsheets/
https://stackoverflow.com
https://github.com/rfordatascience/tidytuesday

R boot camp

▶ R is a language and environment for statistical computing and
graphics

▶ Create and manipulate objects
▶ System-supplied or user-defined functionality as functions
▶ Extended via packages

▶ RStudio is an integrated development environment for R,
which includes:

▶ a console to run R code
▶ an editor to write code and text
▶ tools for plotting, history, debugging and workspace

management

▶ Let’s open RStudio and a plain R Script

R boot camp

▶ R is a language and environment for statistical computing and
graphics
▶ Create and manipulate objects

▶ System-supplied or user-defined functionality as functions
▶ Extended via packages

▶ RStudio is an integrated development environment for R,
which includes:

▶ a console to run R code
▶ an editor to write code and text
▶ tools for plotting, history, debugging and workspace

management

▶ Let’s open RStudio and a plain R Script

R boot camp

▶ R is a language and environment for statistical computing and
graphics
▶ Create and manipulate objects
▶ System-supplied or user-defined functionality as functions

▶ Extended via packages
▶ RStudio is an integrated development environment for R,

which includes:

▶ a console to run R code
▶ an editor to write code and text
▶ tools for plotting, history, debugging and workspace

management

▶ Let’s open RStudio and a plain R Script

R boot camp

▶ R is a language and environment for statistical computing and
graphics
▶ Create and manipulate objects
▶ System-supplied or user-defined functionality as functions
▶ Extended via packages

▶ RStudio is an integrated development environment for R,
which includes:

▶ a console to run R code
▶ an editor to write code and text
▶ tools for plotting, history, debugging and workspace

management

▶ Let’s open RStudio and a plain R Script

R boot camp

▶ R is a language and environment for statistical computing and
graphics
▶ Create and manipulate objects
▶ System-supplied or user-defined functionality as functions
▶ Extended via packages

▶ RStudio is an integrated development environment for R,
which includes:

▶ a console to run R code
▶ an editor to write code and text
▶ tools for plotting, history, debugging and workspace

management
▶ Let’s open RStudio and a plain R Script

R boot camp

▶ R is a language and environment for statistical computing and
graphics
▶ Create and manipulate objects
▶ System-supplied or user-defined functionality as functions
▶ Extended via packages

▶ RStudio is an integrated development environment for R,
which includes:
▶ a console to run R code

▶ an editor to write code and text
▶ tools for plotting, history, debugging and workspace

management
▶ Let’s open RStudio and a plain R Script

R boot camp

▶ R is a language and environment for statistical computing and
graphics
▶ Create and manipulate objects
▶ System-supplied or user-defined functionality as functions
▶ Extended via packages

▶ RStudio is an integrated development environment for R,
which includes:
▶ a console to run R code
▶ an editor to write code and text

▶ tools for plotting, history, debugging and workspace
management

▶ Let’s open RStudio and a plain R Script

R boot camp

▶ R is a language and environment for statistical computing and
graphics
▶ Create and manipulate objects
▶ System-supplied or user-defined functionality as functions
▶ Extended via packages

▶ RStudio is an integrated development environment for R,
which includes:
▶ a console to run R code
▶ an editor to write code and text
▶ tools for plotting, history, debugging and workspace

management

▶ Let’s open RStudio and a plain R Script

R boot camp

▶ R is a language and environment for statistical computing and
graphics
▶ Create and manipulate objects
▶ System-supplied or user-defined functionality as functions
▶ Extended via packages

▶ RStudio is an integrated development environment for R,
which includes:
▶ a console to run R code
▶ an editor to write code and text
▶ tools for plotting, history, debugging and workspace

management
▶ Let’s open RStudio and a plain R Script

Running R code and operators
Arithmetic Operators
1 + 1

[1] 2

2 * 8

[1] 16

9 / 3

[1] 3

2ˆ3

[1] 8

Running R code and operators
Relational Operators
10 > 8

[1] TRUE

7 <= 6

[1] FALSE

(2 * 5) == 10

[1] TRUE

1 != 2

[1] TRUE

Objects in R: vectors and assignment
Concatenate vectors into a new vector
c(1, 2, 3)

[1] 1 2 3

Assign them to a new object for manipulation
x <- c(1, 2, 3)
print(x) # or simply, x

[1] 1 2 3

Operators on vector
x + 1

[1] 2 3 4

x == 1

[1] TRUE FALSE FALSE

Objects in R: vectors and functions

Use an object as input to a function
x <- c(1, 2, 3)

class(x)

[1] "numeric"

length(x)

[1] 3

mean(x)

[1] 2

Objects in R: three beginner tips
1. Unless you assign (<-) some operations or transformations to

an object, those chances will not be registered

x <- c(1, 2, 3)
print(x + 1)

[1] 2 3 4

print(x)

[1] 1 2 3

x <- x + 1
print(x)

[1] 2 3 4

Objects in R: three beginner tips

2. New assignment will overwrite the original values if you assign
some values to an existing object. It is a major source of
errors. One advise is to keep distinct object names

x <- c(1, 2, 3)
length(x)

[1] 3

x <- c(1, 2, 3, 4, 5)
length(x)

[1] 5

Objects in R: three beginner tips
3. When using functions, we often bump into unexpected

outputs, or error messages:

y <- c(1, 2, 3, NA)
mean(y)

[1] NA

It's essential to know how to seek help:
help(mean)

starting httpd help server ... done

?mean

Specify appropriate arguments for functions:
mean(y, na.rm = TRUE)

[1] 2

Objects in R: atomic vectors

▶ What are vectors exactly?

▶ (Atomic) vectors are the most basic units of data in R
▶ Most common types of atomic vectors: numeric (integer,

double), logical, character

Objects in R: atomic vectors

▶ What are vectors exactly?
▶ (Atomic) vectors are the most basic units of data in R

▶ Most common types of atomic vectors: numeric (integer,
double), logical, character

Objects in R: atomic vectors

▶ What are vectors exactly?
▶ (Atomic) vectors are the most basic units of data in R
▶ Most common types of atomic vectors: numeric (integer,

double), logical, character

Objects in R: atomic vectors
▶ Most common types of atomic vectors: numeric (integer,

double), logical, character

x <- c(1, 2, 3)
class(x)

[1] "numeric"

y <- c(TRUE, FALSE, FALSE)
class(y)

[1] "logical"

names <- c("Peter", "Paul", "Mary")
class(names)

[1] "character"

Objects in R: atomic vectors

▶ You can also coerce one type of vector into another:

x <- c(1, 2, 3)
x <- as.character(x)

print(x)

[1] "1" "2" "3"

class(x)

[1] "character"

Objects in R: matrix and data frame

▶ To deal with massive data, we need efficient data structures
to store and manipulate vectors: matrices and data frames

Objects in R: matrix and data frame

▶ To create a matrix:

Create a vector
numbers <- 1:12
print(numbers)

[1] 1 2 3 4 5 6 7 8 9 10 11 12

Store it as a matrix
matrix1 <- matrix(data = numbers, nrow = 3, byrow = TRUE)
print(matrix1)

[,1] [,2] [,3] [,4]
[1,] 1 2 3 4
[2,] 5 6 7 8
[3,] 9 10 11 12

Objects in R: matrix and data frame

Basic information
class(matrix1)

[1] "matrix" "array"

dim(matrix1) # dimensions

[1] 3 4

Objects in R: matrix and data frame

We can change the row/column names of matrices
rownames(matrix1)

NULL

rownames(matrix1) <- c("row1", "row2", "row3")
print(matrix1)

[,1] [,2] [,3] [,4]
row1 1 2 3 4
row2 5 6 7 8
row3 9 10 11 12

Objects in R: matrix and data frame

Automate any repetitive process
col_names <- paste0("column", 1:4)
print(col_names)

[1] "column1" "column2" "column3" "column4"

colnames(matrix1) <- col_names
print(matrix1)

column1 column2 column3 column4
row1 1 2 3 4
row2 5 6 7 8
row3 9 10 11 12

Objects in R: matrix and data frame

To augment the matrix with new column
column5 <- c(13, 14, 15)
matrix1 <- cbind(matrix1, column5)
print(matrix1)

column1 column2 column3 column4 column5
row1 1 2 3 4 13
row2 5 6 7 8 14
row3 9 10 11 12 15

Objects in R: matrix and data frame

To augment the matrix with new row
row4 <- c("a", "b", "c", "d", "e")
matrix1 <- rbind(matrix1, row4)
print(matrix1)

column1 column2 column3 column4 column5
row1 "1" "2" "3" "4" "13"
row2 "5" "6" "7" "8" "14"
row3 "9" "10" "11" "12" "15"
row4 "a" "b" "c" "d" "e"

Why do all vectors become characters?

Objects in R: matrix and data frame

▶ Matrices vs. data frames

▶ Matrices can only contain one homogenous type of vectors
▶ Data frames can contain heterogeneous types of vectors, and

thus are more flexible

Objects in R: matrix and data frame

▶ Matrices vs. data frames
▶ Matrices can only contain one homogenous type of vectors

▶ Data frames can contain heterogeneous types of vectors, and
thus are more flexible

Objects in R: matrix and data frame

▶ Matrices vs. data frames
▶ Matrices can only contain one homogenous type of vectors
▶ Data frames can contain heterogeneous types of vectors, and

thus are more flexible

Objects in R: matrix and data frame

▶ Data frames can contain heterogeneous types of vectors, and
thus are more flexible

df1 <- data.frame(
names = c("Peter", "Paul", "Mary"),
age = c(14, 15, 16),
female = c(FALSE, FALSE, TRUE),
stringsAsFactors = FALSE

)

print(df1)

names age female
1 Peter 14 FALSE
2 Paul 15 FALSE
3 Mary 16 TRUE

Objects in R: matrix and data frame

Basic information
class(df1)

[1] "data.frame"

dim(df1)

[1] 3 3

str(df1)

’data.frame’: 3 obs. of 3 variables:
$ names : chr "Peter" "Paul" "Mary"
$ age : num 14 15 16
$ female: logi FALSE FALSE TRUE

Objects in R: subsetting data
▶ There are several ways to subset data: row/column indices,

variable names, or evaluations

1) Subsetting by row/column indices
For the element in row 1, column 1
df1[1, 1]

[1] "Peter"

For all elements in row 1, regardless of columns
df1[1,]

names age female
1 Peter 14 FALSE

For all elements in column 1, regardless of rows
df1[, 1]

[1] "Peter" "Paul" "Mary"

Objects in R: subsetting data

2) Subsetting by variable names
df1$names

[1] "Peter" "Paul" "Mary"

df1$age

[1] 14 15 16

df1$female

[1] FALSE FALSE TRUE

Objects in R: subsetting data
3) Subsetting by evaluations
df1[df1$age >= 15,]

names age female
2 Paul 15 FALSE
3 Mary 16 TRUE

df1[df1$female == TRUE,]

names age female
3 Mary 16 TRUE

df1[df1$name %in% c("Peter", "Paul"),]

names age female
1 Peter 14 FALSE
2 Paul 15 FALSE

Objects in R: creating new variable in data frame
print(df1)

names age female
1 Peter 14 FALSE
2 Paul 15 FALSE
3 Mary 16 TRUE

df1$edu

NULL

df1$edu <- c("hs", "col", "phd")

print(df1)

names age female edu
1 Peter 14 FALSE hs
2 Paul 15 FALSE col
3 Mary 16 TRUE phd

Summary of data structures in R

Homogeneous Heterogeneous

1d Atomic vector List
2d Matrix Data frame
nd Array

▶ Another important data structure: factor for categorical
data, which will be important for visualization purpose

Vector practices

▶ Create the following objects:

1. vector1: {a1, a2, a3, b1, b2, b3, c1, c2, c3 . . . z1, z2, z3}

▶ Hint: break downs the question into two parts; check out
function rep(..., times = ..., each = ...)

2. vector2: The sequence from 1 to 49 by an increment of 2

▶ Hint: check out function seq(...)
▶ Subset the 3rd, 16th, and 25th elements of the vector
▶ Subset those elements whose values are either smaller than 10,

or greater than 40

Vector practices

▶ Create the following objects:

1. vector1: {a1, a2, a3, b1, b2, b3, c1, c2, c3 . . . z1, z2, z3}

▶ Hint: break downs the question into two parts; check out
function rep(..., times = ..., each = ...)

2. vector2: The sequence from 1 to 49 by an increment of 2

▶ Hint: check out function seq(...)
▶ Subset the 3rd, 16th, and 25th elements of the vector
▶ Subset those elements whose values are either smaller than 10,

or greater than 40

Vector practices

▶ Create the following objects:

1. vector1: {a1, a2, a3, b1, b2, b3, c1, c2, c3 . . . z1, z2, z3}
▶ Hint: break downs the question into two parts; check out

function rep(..., times = ..., each = ...)

2. vector2: The sequence from 1 to 49 by an increment of 2

▶ Hint: check out function seq(...)
▶ Subset the 3rd, 16th, and 25th elements of the vector
▶ Subset those elements whose values are either smaller than 10,

or greater than 40

Vector practices

▶ Create the following objects:

1. vector1: {a1, a2, a3, b1, b2, b3, c1, c2, c3 . . . z1, z2, z3}
▶ Hint: break downs the question into two parts; check out

function rep(..., times = ..., each = ...)

2. vector2: The sequence from 1 to 49 by an increment of 2

▶ Hint: check out function seq(...)
▶ Subset the 3rd, 16th, and 25th elements of the vector
▶ Subset those elements whose values are either smaller than 10,

or greater than 40

Vector practices

▶ Create the following objects:

1. vector1: {a1, a2, a3, b1, b2, b3, c1, c2, c3 . . . z1, z2, z3}
▶ Hint: break downs the question into two parts; check out

function rep(..., times = ..., each = ...)

2. vector2: The sequence from 1 to 49 by an increment of 2
▶ Hint: check out function seq(...)

▶ Subset the 3rd, 16th, and 25th elements of the vector
▶ Subset those elements whose values are either smaller than 10,

or greater than 40

Vector practices

▶ Create the following objects:

1. vector1: {a1, a2, a3, b1, b2, b3, c1, c2, c3 . . . z1, z2, z3}
▶ Hint: break downs the question into two parts; check out

function rep(..., times = ..., each = ...)

2. vector2: The sequence from 1 to 49 by an increment of 2
▶ Hint: check out function seq(...)
▶ Subset the 3rd, 16th, and 25th elements of the vector

▶ Subset those elements whose values are either smaller than 10,
or greater than 40

Vector practices

▶ Create the following objects:

1. vector1: {a1, a2, a3, b1, b2, b3, c1, c2, c3 . . . z1, z2, z3}
▶ Hint: break downs the question into two parts; check out

function rep(..., times = ..., each = ...)

2. vector2: The sequence from 1 to 49 by an increment of 2
▶ Hint: check out function seq(...)
▶ Subset the 3rd, 16th, and 25th elements of the vector
▶ Subset those elements whose values are either smaller than 10,

or greater than 40

Vector practices
Q1
chr <- rep(letters, each = 3)
print(chr)

[1] "a" "a" "a" "b" "b" "b" "c" "c" "c" "d" "d"
[12] "d" "e" "e" "e" "f" "f" "f" "g" "g" "g" "h"
[23] "h" "h" "i" "i" "i" "j" "j" "j" "k" "k" "k"
[34] "l" "l" "l" "m" "m" "m" "n" "n" "n" "o" "o"
[45] "o" "p" "p" "p" "q" "q" "q" "r" "r" "r" "s"
[56] "s" "s" "t" "t" "t" "u" "u" "u" "v" "v" "v"
[67] "w" "w" "w" "x" "x" "x" "y" "y" "y" "z" "z"
[78] "z"

num <- rep(1:3, times = length(letters))
print(num)

[1] 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2
[24] 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1
[47] 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
[70] 1 2 3 1 2 3 1 2 3

Vector practices

Q1
vector1 <- paste0(chr, num)
print(vector1)

[1] "a1" "a2" "a3" "b1" "b2" "b3" "c1" "c2" "c3"
[10] "d1" "d2" "d3" "e1" "e2" "e3" "f1" "f2" "f3"
[19] "g1" "g2" "g3" "h1" "h2" "h3" "i1" "i2" "i3"
[28] "j1" "j2" "j3" "k1" "k2" "k3" "l1" "l2" "l3"
[37] "m1" "m2" "m3" "n1" "n2" "n3" "o1" "o2" "o3"
[46] "p1" "p2" "p3" "q1" "q2" "q3" "r1" "r2" "r3"
[55] "s1" "s2" "s3" "t1" "t2" "t3" "u1" "u2" "u3"
[64] "v1" "v2" "v3" "w1" "w2" "w3" "x1" "x2" "x3"
[73] "y1" "y2" "y3" "z1" "z2" "z3"

Vector practices

Q2
vector2 <- seq(from = 1, to = 49, by = 2)
print(vector2)

[1] 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
[16] 31 33 35 37 39 41 43 45 47 49

vector2[c(3, 16, 25)]

[1] 5 31 49

vector2[vector2 < 10 | vector2 > 40]

[1] 1 3 5 7 9 41 43 45 47 49

Vector practices

3. matrix1: a 5 by 5 matrix containing values from vector2

▶ Assign the row names: row_a, row_b, row_c, row_d, row_e
▶ Assign the column names: col1, col2, col3, col4, col5
▶ Multiply the values in the first column of matrix 1 by 100;

overwrite the original column
4. df1: a dataframe with two variables:

▶ country = {US, UK, CA, FR, IT}
▶ pop = {327, 66, 37, 67, 60}
▶ Subset top-three observations in term of the level of population
▶ Hint: check out function order(...)

Vector practices

3. matrix1: a 5 by 5 matrix containing values from vector2
▶ Assign the row names: row_a, row_b, row_c, row_d, row_e

▶ Assign the column names: col1, col2, col3, col4, col5
▶ Multiply the values in the first column of matrix 1 by 100;

overwrite the original column
4. df1: a dataframe with two variables:

▶ country = {US, UK, CA, FR, IT}
▶ pop = {327, 66, 37, 67, 60}
▶ Subset top-three observations in term of the level of population
▶ Hint: check out function order(...)

Vector practices

3. matrix1: a 5 by 5 matrix containing values from vector2
▶ Assign the row names: row_a, row_b, row_c, row_d, row_e
▶ Assign the column names: col1, col2, col3, col4, col5

▶ Multiply the values in the first column of matrix 1 by 100;
overwrite the original column

4. df1: a dataframe with two variables:

▶ country = {US, UK, CA, FR, IT}
▶ pop = {327, 66, 37, 67, 60}
▶ Subset top-three observations in term of the level of population
▶ Hint: check out function order(...)

Vector practices

3. matrix1: a 5 by 5 matrix containing values from vector2
▶ Assign the row names: row_a, row_b, row_c, row_d, row_e
▶ Assign the column names: col1, col2, col3, col4, col5
▶ Multiply the values in the first column of matrix 1 by 100;

overwrite the original column

4. df1: a dataframe with two variables:

▶ country = {US, UK, CA, FR, IT}
▶ pop = {327, 66, 37, 67, 60}
▶ Subset top-three observations in term of the level of population
▶ Hint: check out function order(...)

Vector practices

3. matrix1: a 5 by 5 matrix containing values from vector2
▶ Assign the row names: row_a, row_b, row_c, row_d, row_e
▶ Assign the column names: col1, col2, col3, col4, col5
▶ Multiply the values in the first column of matrix 1 by 100;

overwrite the original column
4. df1: a dataframe with two variables:

▶ country = {US, UK, CA, FR, IT}
▶ pop = {327, 66, 37, 67, 60}
▶ Subset top-three observations in term of the level of population
▶ Hint: check out function order(...)

Vector practices

3. matrix1: a 5 by 5 matrix containing values from vector2
▶ Assign the row names: row_a, row_b, row_c, row_d, row_e
▶ Assign the column names: col1, col2, col3, col4, col5
▶ Multiply the values in the first column of matrix 1 by 100;

overwrite the original column
4. df1: a dataframe with two variables:

▶ country = {US, UK, CA, FR, IT}

▶ pop = {327, 66, 37, 67, 60}
▶ Subset top-three observations in term of the level of population
▶ Hint: check out function order(...)

Vector practices

3. matrix1: a 5 by 5 matrix containing values from vector2
▶ Assign the row names: row_a, row_b, row_c, row_d, row_e
▶ Assign the column names: col1, col2, col3, col4, col5
▶ Multiply the values in the first column of matrix 1 by 100;

overwrite the original column
4. df1: a dataframe with two variables:

▶ country = {US, UK, CA, FR, IT}
▶ pop = {327, 66, 37, 67, 60}

▶ Subset top-three observations in term of the level of population
▶ Hint: check out function order(...)

Vector practices

3. matrix1: a 5 by 5 matrix containing values from vector2
▶ Assign the row names: row_a, row_b, row_c, row_d, row_e
▶ Assign the column names: col1, col2, col3, col4, col5
▶ Multiply the values in the first column of matrix 1 by 100;

overwrite the original column
4. df1: a dataframe with two variables:

▶ country = {US, UK, CA, FR, IT}
▶ pop = {327, 66, 37, 67, 60}
▶ Subset top-three observations in term of the level of population

▶ Hint: check out function order(...)

Vector practices

3. matrix1: a 5 by 5 matrix containing values from vector2
▶ Assign the row names: row_a, row_b, row_c, row_d, row_e
▶ Assign the column names: col1, col2, col3, col4, col5
▶ Multiply the values in the first column of matrix 1 by 100;

overwrite the original column
4. df1: a dataframe with two variables:

▶ country = {US, UK, CA, FR, IT}
▶ pop = {327, 66, 37, 67, 60}
▶ Subset top-three observations in term of the level of population
▶ Hint: check out function order(...)

Vector practices

Q3
matrix1 <- matrix(data = vector2, nrow = 5, ncol = 5)
rownames(matrix1) <- paste("row", letters[1:5], sep = "_")
colnames(matrix1) <- paste0("col", 1:5)
matrix1[, 1] <- matrix1[, 1] * 100
print(matrix1)

col1 col2 col3 col4 col5
row_a 100 11 21 31 41
row_b 300 13 23 33 43
row_c 500 15 25 35 45
row_d 700 17 27 37 47
row_e 900 19 29 39 49

Vector practices
Q4
df1 <- data.frame(country = c("US", "UK", "CA", "FR", "IT"),

pop = c(327, 66, 37, 67, 60))
print(df1)

country pop
1 US 327
2 UK 66
3 CA 37
4 FR 67
5 IT 60

order(df1$pop, decreasing = TRUE)

[1] 1 4 2 5 3

top3 <- order(df1$pop, decreasing = TRUE)[1:3]
df1[top3,]

country pop
1 US 327
4 FR 67
2 UK 66

Workflow in R

▶ Usual workflow for data anlaysis (Grolemund and Wickham
2016):

Tidyverse and tidy data

▶ Tidyverse is a collection of packages designed for data
science with unified grammar and data structures

▶ Tidy data:

▶ Each variable must have its own column
▶ Each observation must have its own row
▶ Each value must have its own cell

Tidyverse and tidy data

▶ Tidyverse is a collection of packages designed for data
science with unified grammar and data structures

▶ Tidy data:

▶ Each variable must have its own column
▶ Each observation must have its own row
▶ Each value must have its own cell

Tidyverse and tidy data

▶ Tidyverse is a collection of packages designed for data
science with unified grammar and data structures

▶ Tidy data:
▶ Each variable must have its own column

▶ Each observation must have its own row
▶ Each value must have its own cell

Tidyverse and tidy data

▶ Tidyverse is a collection of packages designed for data
science with unified grammar and data structures

▶ Tidy data:
▶ Each variable must have its own column
▶ Each observation must have its own row

▶ Each value must have its own cell

Tidyverse and tidy data

▶ Tidyverse is a collection of packages designed for data
science with unified grammar and data structures

▶ Tidy data:
▶ Each variable must have its own column
▶ Each observation must have its own row
▶ Each value must have its own cell

Tidyverse and tidy data

▶ To install Tidyverse package, run:

install.packages("tidyverse")

▶ To load a package, run (usually at the top of your R document):

library(tidyverse)

Importing data in R
Load package
library(tidyverse)

Load econ.csv
econ <- read_csv("econ.csv")

Rows: 557 Columns: 4
-- Column specification --------------------------
Delimiter: ","
chr (1): country
dbl (3): GWn, year, gdpPercap
##
i Use ‘spec()‘ to retrieve the full column specification for this data.
i Specify the column types or set ‘show_col_types = FALSE‘ to quiet this message.

tibble (tbl) is a special class of data frame
class(econ)

[1] "spec_tbl_df" "tbl_df" "tbl"
[4] "data.frame"

Importing data in R
Get a sense of the dataset
glimpse(econ)

Rows: 557
Columns: 4
$ country <chr> "Afghanistan", "Afghanistan", ~
$ GWn <dbl> 700, 700, 700, 339, 615, 615, ~
$ year <dbl> 1983, 1985, 1991, 2000, 1967, ~
$ gdpPercap <dbl> 862.5477, 818.9504, 600.5932, ~

head(econ)

A tibble: 6 x 4
country GWn year gdpPercap
<chr> <dbl> <dbl> <dbl>
1 Afghanistan 700 1983 863.
2 Afghanistan 700 1985 819.
3 Afghanistan 700 1991 601.
4 Albania 339 2000 2962.
5 Algeria 615 1967 1824.
6 Algeria 615 1968 1977.

Basic data wrangling

▶ Below are just scratching the surface; check out

▶ Introductory course to tidyverse at DataCamp
▶ Cheat sheet for data wrangling
▶ R for Data Science

https://www.datacamp.com/courses/introduction-to-the-tidyverse
https://github.com/rstudio/cheatsheets/raw/master/data-transformation.pdf
https://r4ds.had.co.nz

Basic data wrangling

▶ Below are just scratching the surface; check out
▶ Introductory course to tidyverse at DataCamp

▶ Cheat sheet for data wrangling
▶ R for Data Science

https://www.datacamp.com/courses/introduction-to-the-tidyverse
https://github.com/rstudio/cheatsheets/raw/master/data-transformation.pdf
https://r4ds.had.co.nz

Basic data wrangling

▶ Below are just scratching the surface; check out
▶ Introductory course to tidyverse at DataCamp
▶ Cheat sheet for data wrangling

▶ R for Data Science

https://www.datacamp.com/courses/introduction-to-the-tidyverse
https://github.com/rstudio/cheatsheets/raw/master/data-transformation.pdf
https://r4ds.had.co.nz

Basic data wrangling

▶ Below are just scratching the surface; check out
▶ Introductory course to tidyverse at DataCamp
▶ Cheat sheet for data wrangling
▶ R for Data Science

https://www.datacamp.com/courses/introduction-to-the-tidyverse
https://github.com/rstudio/cheatsheets/raw/master/data-transformation.pdf
https://r4ds.had.co.nz

Basic data wrangling: count()

Count number of rows in each group:

econ %>%
count(country)

A tibble: 146 x 2
country n
<chr> <int>
1 Afghanistan 3
2 Albania 1
3 Algeria 5
4 Angola 3
5 Argentina 5
6 Australia 3
7 Austria 9
8 Bahrain 2
9 Bangladesh 5
10 Belarus (Byelorussia) 1
i 136 more rows

Basic data wrangling: %>%
▶ What is %>% (“pipe”)?

▶ x %>% fun(y) is equivalent to fun(x, y)
▶ Its advantage will be apparent when you perform numerous

steps of manipulation

count(econ, country) # Equivalent to econ %>% count(country)

A tibble: 146 x 2
country n
<chr> <int>
1 Afghanistan 3
2 Albania 1
3 Algeria 5
4 Angola 3
5 Argentina 5
6 Australia 3
7 Austria 9
8 Bahrain 2
9 Bangladesh 5
10 Belarus (Byelorussia) 1
i 136 more rows

Basic data wrangling: arrange()

Order rows by values of column(s) from low to high:

econ %>%
count(country) %>%
arrange(n) # Rather than: arrange(count(econ, country), n)

A tibble: 146 x 2
country n
<chr> <int>
1 Albania 1
2 Belarus (Byelorussia) 1
3 Cambodia (Kampuchea) 1
4 Central African Republic 1
5 Chile 1
6 China 1
7 Dominican Republic 1
8 Estonia 1
9 Gabon 1
10 Ghana 1
i 136 more rows

Basic data wrangling: arrange()

Order rows by values of column(s) from high to low:

econ %>%
count(country) %>%
arrange(desc(n))

A tibble: 146 x 2
country n
<chr> <int>
1 United States of America 112
2 Mexico 10
3 Austria 9
4 Uruguay 9
5 Philippines 8
6 Denmark 7
7 Norway 7
8 Portugal 7
9 Trinidad and Tobago 7
10 Venezuela 7
i 136 more rows

Basic data wrangling: filter()

Extract rows that meet logical criteria:

econ %>%
filter(country == "Brazil")

A tibble: 3 x 4
country GWn year gdpPercap
<chr> <dbl> <dbl> <dbl>
1 Brazil 140 1954 1848.
2 Brazil 140 1989 5224.
3 Brazil 140 2002 5481.

Basic data wrangling: filter()

Extract rows that meet multiple logical criteria:

econ %>%
filter(

country == "Brazil" | country == "Russia (Soviet Union)" |
country == "India" | country == "China"

)

A tibble: 9 x 4
country GWn year gdpPercap
<chr> <dbl> <dbl> <dbl>
1 Brazil 140 1954 1848.
2 Brazil 140 1989 5224.
3 Brazil 140 2002 5481.
4 China 710 1996 2892.
5 India 750 1943 698.
6 India 750 1961 758.
7 India 750 1992 1350.
8 Russia (Soviet Union) 365 1982 6536.
9 Russia (Soviet Union) 365 2005 7269.

Basic data wrangling: filter()

Alternatively:

econ %>%
filter(country %in% c("Brazil", "Russia (Soviet Union)", "India", "China"))

A tibble: 9 x 4
country GWn year gdpPercap
<chr> <dbl> <dbl> <dbl>
1 Brazil 140 1954 1848.
2 Brazil 140 1989 5224.
3 Brazil 140 2002 5481.
4 China 710 1996 2892.
5 India 750 1943 698.
6 India 750 1961 758.
7 India 750 1992 1350.
8 Russia (Soviet Union) 365 1982 6536.
9 Russia (Soviet Union) 365 2005 7269.

Basic data wrangling: select()

Extract columns (variables):

econ %>%
select(country, year, gdpPercap)

A tibble: 557 x 3
country year gdpPercap
<chr> <dbl> <dbl>
1 Afghanistan 1983 863.
2 Afghanistan 1985 819.
3 Afghanistan 1991 601.
4 Albania 2000 2962.
5 Algeria 1967 1824.
6 Algeria 1968 1977.
7 Algeria 1977 2759.
8 Algeria 1986 3301.
9 Algeria 2006 3386.
10 Angola 1953 1126.
i 547 more rows

Basic data wrangling: filter() & select()
Filter USA observations from 2000 to 2010 with year and
gdpPercap as the only variables:
USAdata <- econ %>%

filter(country == "United States of America",
year %in% 2000:2010) %>%

select(year, gdpPercap)

print(USAdata)

A tibble: 11 x 2
year gdpPercap
<dbl> <dbl>
1 2000 28702.
2 2001 28726.
3 2002 28977.
4 2003 29459.
5 2004 30200.
6 2005 30842.
7 2006 31358.
8 2007 31655.
9 2008 31251.
10 2009 29899.
11 2010 30491.

Basic data wrangling: summarize()

Compute table of summaries:

USAdata %>%
summarize(avg_gdpPercap = mean(gdpPercap))

A tibble: 1 x 1
avg_gdpPercap
<dbl>
1 30142.

What if we want to calculate the average GDP per capita for all
countries in our data set?

Basic data wrangling: group_by() & summarize()
▶ Create a grouped version of the table with group_by()

▶ Subsequent functions will manipulate each group separately

econ %>%
group_by(country) %>%
summarize(avg_gdpPercap = mean(gdpPercap)) %>%
arrange(desc(avg_gdpPercap))

A tibble: 146 x 2
country avg_gdpPercap
<chr> <dbl>
1 Qatar 39157.
2 Kuwait 16288.
3 German Federal Republic 15739.
4 Norway 14846.
5 Ireland 14353.
6 Belarus (Byelorussia) 13659.
7 United States of America 13623.
8 United Arab Emirates 12812.
9 Belgium 12053.
10 Austria 11794.
i 136 more rows

Basic data wrangling: more summarize()

What if we want to know the numbers of distinct countries and
years in the data set?

econ %>%
summarize_at(c("country", "year"), n_distinct)

A tibble: 1 x 2
country year
<int> <int>
1 146 111

Basic data wrangling: mutate()
Compute new columns (variables):

econ %>%
mutate(

id = row_number(),
decade = year %/% 10 * 10

) %>%
select(id, country, GWn, year, decade, gdpPercap)

A tibble: 557 x 6
id country GWn year decade gdpPercap
<int> <chr> <dbl> <dbl> <dbl> <dbl>
1 1 Afghanistan 700 1983 1980 863.
2 2 Afghanistan 700 1985 1980 819.
3 3 Afghanistan 700 1991 1990 601.
4 4 Albania 339 2000 2000 2962.
5 5 Algeria 615 1967 1960 1824.
6 6 Algeria 615 1968 1960 1977.
7 7 Algeria 615 1977 1970 2759.
8 8 Algeria 615 1986 1980 3301.
9 9 Algeria 615 2006 2000 3386.
10 10 Angola 540 1953 1950 1126.
i 547 more rows

Basic data wrangling: group_by() & summarize()
What if we want to know countries’ average GDP per capita over
decades?
econ %>%

mutate(decade = year %/% 10 * 10) %>%
group_by(country, decade) %>%
summarize(decAvg_gdp = mean(gdpPercap))

‘summarise()‘ has grouped output by ’country’.
You can override using the ‘.groups‘ argument.

A tibble: 382 x 3
Groups: country [146]
country decade decAvg_gdp
<chr> <dbl> <dbl>
1 Afghanistan 1980 841.
2 Afghanistan 1990 601.
3 Albania 2000 2962.
4 Algeria 1960 1901.
5 Algeria 1970 2759.
6 Algeria 1980 3301.
7 Algeria 2000 3386.
8 Angola 1950 1161.
9 Angola 2000 825.
10 Argentina 1900 2992.
i 372 more rows

Saving wrangled data

When you save the wrangled data, don’t overwrite the original
data with the same file name:

write_csv(econ, "econ_wrangled.csv")

Intermediate data wranggling: second data set
pop <- read_csv("pop.csv")
head(pop)

A tibble: 6 x 5
country GWn year pop region
<chr> <dbl> <dbl> <dbl> <chr>
1 Afghanistan 700 1983 15177000 Asia: Southern Asia
2 Afghanistan 700 1985 14519000 Asia: Southern Asia
3 Afghanistan 700 1991 15403000 Asia: Southern Asia
4 Albania 339 2000 3113000 Europe: Southern Europe
5 Algeria 615 1967 13078000 Africa: Northern Africa
6 Algeria 615 1968 13495000 Africa: Northern Africa

Compare with econ
head(econ)

A tibble: 6 x 4
country GWn year gdpPercap
<chr> <dbl> <dbl> <dbl>
1 Afghanistan 700 1983 863.
2 Afghanistan 700 1985 819.
3 Afghanistan 700 1991 601.
4 Albania 339 2000 2962.
5 Algeria 615 1967 1824.
6 Algeria 615 1968 1977.

Intermediate data wranggling: join family
How do we combine two data sets such that:

Warning in left_join(., pop, by = c("GWn", "year")): Detected an unexpected many-to-many relationship between ‘x‘ and ‘y‘.
i Row 510 of ‘x‘ matches multiple rows in ‘y‘.
i Row 510 of ‘y‘ matches multiple rows in ‘x‘.
i If a many-to-many relationship is expected, set ‘relationship = "many-to-many"‘ to silence this warning.

A tibble: 559 x 6
country GWn year gdpPercap pop region
<chr> <dbl> <dbl> <dbl> <dbl> <chr>
1 Afghanistan 700 1983 863. 15177000 Asia: Southern Asia
2 Afghanistan 700 1985 819. 14519000 Asia: Southern Asia
3 Afghanistan 700 1991 601. 15403000 Asia: Southern Asia
4 Albania 339 2000 2962. 3113000 Europe: Southern Europe
5 Algeria 615 1967 1824. 13078000 Africa: Northern Africa
6 Algeria 615 1968 1977. 13495000 Africa: Northern Africa
7 Algeria 615 1977 2759. 17058000 Africa: Northern Africa
8 Algeria 615 1986 3301. 22520000 Africa: Northern Africa
9 Algeria 615 2006 3386. 33749328 Africa: Northern Africa
10 Angola 540 1953 1126. NA NA: NA
i 549 more rows

Intermediate data wranggling: join family
Family of join functions: inner_join, left_join, right_join,
full_join. . .
data <- econ %>%

left_join(pop, by = c("GWn", "year")) %>%
select(-country.y) %>%
rename(country = country.x)

Warning in left_join(., pop, by = c("GWn", "year")): Detected an unexpected many-to-many relationship between ‘x‘ and ‘y‘.
i Row 510 of ‘x‘ matches multiple rows in ‘y‘.
i Row 510 of ‘y‘ matches multiple rows in ‘x‘.
i If a many-to-many relationship is expected, set ‘relationship = "many-to-many"‘ to silence this warning.

A tibble: 559 x 6
country GWn year gdpPercap pop region
<chr> <dbl> <dbl> <dbl> <dbl> <chr>
1 Afghanistan 700 1983 863. 15177000 Asia: Southern Asia
2 Afghanistan 700 1985 819. 14519000 Asia: Southern Asia
3 Afghanistan 700 1991 601. 15403000 Asia: Southern Asia
4 Albania 339 2000 2962. 3113000 Europe: Southern Europe
5 Algeria 615 1967 1824. 13078000 Africa: Northern Africa
6 Algeria 615 1968 1977. 13495000 Africa: Northern Africa
7 Algeria 615 1977 2759. 17058000 Africa: Northern Africa
8 Algeria 615 1986 3301. 22520000 Africa: Northern Africa
9 Algeria 615 2006 3386. 33749328 Africa: Northern Africa
10 Angola 540 1953 1126. NA NA: NA
i 549 more rows

Intermediate data wranggling: separate (or Regex)

How to separate the region column into continent and
sub_region?

A tibble: 559 x 7
country GWn year gdpPercap pop continent sub_region
<chr> <dbl> <dbl> <dbl> <dbl> <chr> <chr>
1 Afghanistan 700 1983 863. 15177000 Asia Southern Asia
2 Afghanistan 700 1985 819. 14519000 Asia Southern Asia
3 Afghanistan 700 1991 601. 15403000 Asia Southern Asia
4 Albania 339 2000 2962. 3113000 Europe Southern Europe
5 Algeria 615 1967 1824. 13078000 Africa Northern Africa
6 Algeria 615 1968 1977. 13495000 Africa Northern Africa
7 Algeria 615 1977 2759. 17058000 Africa Northern Africa
8 Algeria 615 1986 3301. 22520000 Africa Northern Africa
9 Algeria 615 2006 3386. 33749328 Africa Northern Africa
10 Angola 540 1953 1126. NA NA NA
i 549 more rows

Intermediate data wranggling: separate (or Regex)

How to separate the region column into continent and
sub_region?

data %>%
separate(region, into = c("continent", "sub_region"), sep = ": ")

A tibble: 559 x 7
country GWn year gdpPercap pop continent sub_region
<chr> <dbl> <dbl> <dbl> <dbl> <chr> <chr>
1 Afghanistan 700 1983 863. 15177000 Asia Southern Asia
2 Afghanistan 700 1985 819. 14519000 Asia Southern Asia
3 Afghanistan 700 1991 601. 15403000 Asia Southern Asia
4 Albania 339 2000 2962. 3113000 Europe Southern Europe
5 Algeria 615 1967 1824. 13078000 Africa Northern Africa
6 Algeria 615 1968 1977. 13495000 Africa Northern Africa
7 Algeria 615 1977 2759. 17058000 Africa Northern Africa
8 Algeria 615 1986 3301. 22520000 Africa Northern Africa
9 Algeria 615 2006 3386. 33749328 Africa Northern Africa
10 Angola 540 1953 1126. NA NA NA
i 549 more rows

Intermediate data wranggling: separate (or Regex)
How to separate the region column into continent and
sub_region?

Or using regular expression
data %>%

mutate(continent = str_extract(region, ".*(?=:)"),
sub_region = str_extract(region, "(?<=:).*")) %>%

select(-region)

A tibble: 559 x 7
country GWn year gdpPercap pop continent sub_region
<chr> <dbl> <dbl> <dbl> <dbl> <chr> <chr>
1 Afghanistan 700 1983 863. 15177000 Asia Southern Asia
2 Afghanistan 700 1985 819. 14519000 Asia Southern Asia
3 Afghanistan 700 1991 601. 15403000 Asia Southern Asia
4 Albania 339 2000 2962. 3113000 Europe Southern Europe
5 Algeria 615 1967 1824. 13078000 Africa Northern Africa
6 Algeria 615 1968 1977. 13495000 Africa Northern Africa
7 Algeria 615 1977 2759. 17058000 Africa Northern Africa
8 Algeria 615 1986 3301. 22520000 Africa Northern Africa
9 Algeria 615 2006 3386. 33749328 Africa Northern Africa
10 Angola 540 1953 1126. NA NA NA
i 549 more rows

Intermediate data wranggling: case_when

▶ How to convert pop into a new categorical variable, called
popCat:

▶ Countries with pop value lower than the first quartile of all pop
is classified as “low”

▶ Countries with pop value equal to or higher than the first
quartile, but lower than the third quartile is classified as
“middle”

▶ Countries with pop value equal to or higher than the third
quartile is classified as “high”

Intermediate data wranggling: case_when

▶ How to convert pop into a new categorical variable, called
popCat:
▶ Countries with pop value lower than the first quartile of all pop

is classified as “low”

▶ Countries with pop value equal to or higher than the first
quartile, but lower than the third quartile is classified as
“middle”

▶ Countries with pop value equal to or higher than the third
quartile is classified as “high”

Intermediate data wranggling: case_when

▶ How to convert pop into a new categorical variable, called
popCat:
▶ Countries with pop value lower than the first quartile of all pop

is classified as “low”
▶ Countries with pop value equal to or higher than the first

quartile, but lower than the third quartile is classified as
“middle”

▶ Countries with pop value equal to or higher than the third
quartile is classified as “high”

Intermediate data wranggling: case_when

▶ How to convert pop into a new categorical variable, called
popCat:
▶ Countries with pop value lower than the first quartile of all pop

is classified as “low”
▶ Countries with pop value equal to or higher than the first

quartile, but lower than the third quartile is classified as
“middle”

▶ Countries with pop value equal to or higher than the third
quartile is classified as “high”

Intermediate data wranggling: case_when
Qts <- quantile(data$pop, prob = c(0.25, 0.75), na.rm = TRUE)
print(Qts)

25% 75%
3805000 81896000

Q1 <- Qts[1]
Q3 <- Qts[2]

data <- data %>%
mutate(popCat = case_when(pop < Q1 ~ "low",

pop >= Q1 & pop < Q3 ~ "middle",
pop > Q3 ~ "high"))

A tibble: 559 x 8
country GWn year gdpPercap pop continent sub_region popCat
<chr> <dbl> <dbl> <dbl> <dbl> <chr> <chr> <chr>
1 Afghanistan 700 1983 863. 15177000 Asia Southern Asia middle
2 Afghanistan 700 1985 819. 14519000 Asia Southern Asia middle
3 Afghanistan 700 1991 601. 15403000 Asia Southern Asia middle
4 Albania 339 2000 2962. 3113000 Europe Southern Europe low
5 Algeria 615 1967 1824. 13078000 Africa Northern Africa middle
6 Algeria 615 1968 1977. 13495000 Africa Northern Africa middle
7 Algeria 615 1977 2759. 17058000 Africa Northern Africa middle
8 Algeria 615 1986 3301. 22520000 Africa Northern Africa middle
9 Algeria 615 2006 3386. 33749328 Africa Northern Africa middle
10 Angola 540 1953 1126. NA NA NA <NA>
i 549 more rows

Intermediate data wranggling: mutate and lag

Focus on USA data again. How to create a variable, named
growth, thats computes the percentage change in gdpPercap
compared to the immediate last year?

A tibble: 114 x 4
country year gdpPercap growth
<chr> <dbl> <dbl> <dbl>
1 United States of America 1900 4091. NA
2 United States of America 1901 4464. 0.0912
3 United States of America 1902 4421. -0.00969
4 United States of America 1903 4551. 0.0295
5 United States of America 1904 4410. -0.0311
6 United States of America 1905 4642. 0.0528
7 United States of America 1906 5079. 0.0941
8 United States of America 1907 5065. -0.00280
9 United States of America 1908 4561. -0.0996
10 United States of America 1909 5017. 0.100
i 104 more rows

Intermediate data wranggling: mutate and lag
Extract USA data
USAdata <- data %>%

filter(country == "United States of America") %>%
select(country, year, gdpPercap)

Use `lag` to create a column of gdpPercap in past year
USAdata <- USAdata %>%

mutate(gdpPercap_lag1 = lag(gdpPercap, n = 1))

print(USAdata)

A tibble: 114 x 4
country year gdpPercap gdpPercap_lag1
<chr> <dbl> <dbl> <dbl>
1 United States of America 1900 4091. NA
2 United States of America 1901 4464. 4091.
3 United States of America 1902 4421. 4464.
4 United States of America 1903 4551. 4421.
5 United States of America 1904 4410. 4551.
6 United States of America 1905 4642. 4410.
7 United States of America 1906 5079. 4642.
8 United States of America 1907 5065. 5079.
9 United States of America 1908 4561. 5065.
10 United States of America 1909 5017. 4561.
i 104 more rows

Intermediate data wranggling: mutate and lag

USAdata <- USAdata %>%
mutate(growth = (gdpPercap - gdpPercap_lag1) / gdpPercap_lag1)

print(USAdata)

A tibble: 114 x 5
country year gdpPercap gdpPercap_lag1 growth
<chr> <dbl> <dbl> <dbl> <dbl>
1 United States of America 1900 4091. NA NA
2 United States of America 1901 4464. 4091. 0.0912
3 United States of America 1902 4421. 4464. -0.00969
4 United States of America 1903 4551. 4421. 0.0295
5 United States of America 1904 4410. 4551. -0.0311
6 United States of America 1905 4642. 4410. 0.0528
7 United States of America 1906 5079. 4642. 0.0941
8 United States of America 1907 5065. 5079. -0.00280
9 United States of America 1908 4561. 5065. -0.0996
10 United States of America 1909 5017. 4561. 0.100
i 104 more rows

References

Grolemund, Garrett, and Hadley Wickham. 2016. R for Data Science.
https://r4ds.had.co.nz/.

Healy, Kieran. 2018. Data Visualization: A Practical Introduction. Princeton
University Press.

Imai, Kosuke. 2017. Quantitative Social Science : An Introduction. Princeton:
Princeton University Press.

Wilke, Claus O. 2019. Fundamentals of Data Visualization: A Primer on Making
Informative and Compelling Figures. O’Reilly Media.
https://serialmentor.com/dataviz/.

Xie, Yihui, J. J. Allaire, and Garrett Grolemund. 2019. R Markdown: The Definitive
Guide. https://bookdown.org/yihui/rmarkdown/.

https://r4ds.had.co.nz/
https://serialmentor.com/dataviz/
https://bookdown.org/yihui/rmarkdown/

