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Useful R resources

▶ R

▶ R for Data Science (Grolemund and Wickham 2016)
▶ Quantitative Social Science : An Introduction (Imai 2017)
▶ DataCamp: https://www.datacamp.com
▶ R cheat sheets: https://rstudio.com/resources/cheatsheets/

▶ R Markdown

▶ R Markdown: The Definitive Guide (Xie, Allaire, and
Grolemund 2019)

▶ Data visualization

▶ Data Visualization: A Practical Introduction (Healy 2018)
▶ Fundamentals of Data Visualization: A Primer on Making

Informative and Compelling Figures (Wilke 2019)

▶ Others

▶ Stack Overflow: https://stackoverflow.com
▶ TidyTuesday Project:

https://github.com/rfordatascience/tidytuesday

https://www.datacamp.com
https://rstudio.com/resources/cheatsheets/
https://stackoverflow.com
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R boot camp

▶ R is a language and environment for statistical computing and
graphics

▶ Create and manipulate objects
▶ System-supplied or user-defined functionality as functions
▶ Extended via packages

▶ RStudio is an integrated development environment for R,
which includes:

▶ a console to run R code
▶ an editor to write code and text
▶ tools for plotting, history, debugging and workspace

management

▶ Let’s open RStudio and a plain R Script
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Running R code and operators
# Arithmetic Operators
1 + 1

## [1] 2

2 * 8

## [1] 16

9 / 3

## [1] 3

2ˆ3

## [1] 8



Running R code and operators
# Relational Operators
10 > 8

## [1] TRUE

7 <= 6

## [1] FALSE

(2 * 5) == 10

## [1] TRUE

1 != 2

## [1] TRUE



Objects in R: vectors and assignment
# Concatenate vectors into a new vector
c(1, 2, 3)

## [1] 1 2 3

# Assign them to a new object for manipulation
x <- c(1, 2, 3)
print(x) # or simply, x

## [1] 1 2 3

# Operators on vector
x + 1

## [1] 2 3 4

x == 1

## [1] TRUE FALSE FALSE



Objects in R: vectors and functions

# Use an object as input to a function
x <- c(1, 2, 3)

class(x)

## [1] "numeric"

length(x)

## [1] 3

mean(x)

## [1] 2



Objects in R: three beginner tips
1. Unless you assign (<- ) some operations or transformations to

an object, those chances will not be registered

x <- c(1, 2, 3)
print(x + 1)

## [1] 2 3 4

print(x)

## [1] 1 2 3

x <- x + 1
print(x)

## [1] 2 3 4



Objects in R: three beginner tips

2. New assignment will overwrite the original values if you assign
some values to an existing object. It is a major source of
errors. One advise is to keep distinct object names

x <- c(1, 2, 3)
length(x)

## [1] 3

x <- c(1, 2, 3, 4, 5)
length(x)

## [1] 5



Objects in R: three beginner tips
3. When using functions, we often bump into unexpected

outputs, or error messages:

y <- c(1, 2, 3, NA)
mean(y)

## [1] NA

# It's essential to know how to seek help:
help(mean)

## starting httpd help server ... done

?mean

# Specify appropriate arguments for functions:
mean(y, na.rm = TRUE)

## [1] 2



Objects in R: atomic vectors

▶ What are vectors exactly?

▶ (Atomic) vectors are the most basic units of data in R
▶ Most common types of atomic vectors: numeric (integer,

double), logical, character
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Objects in R: atomic vectors
▶ Most common types of atomic vectors: numeric (integer,

double), logical, character

x <- c(1, 2, 3)
class(x)

## [1] "numeric"

y <- c(TRUE, FALSE, FALSE)
class(y)

## [1] "logical"

names <- c("Peter", "Paul", "Mary")
class(names)

## [1] "character"



Objects in R: atomic vectors

▶ You can also coerce one type of vector into another:

x <- c(1, 2, 3)
x <- as.character(x)

print(x)

## [1] "1" "2" "3"

class(x)

## [1] "character"



Objects in R: matrix and data frame

▶ To deal with massive data, we need efficient data structures
to store and manipulate vectors: matrices and data frames



Objects in R: matrix and data frame

▶ To create a matrix:

# Create a vector
numbers <- 1:12
print(numbers)

## [1] 1 2 3 4 5 6 7 8 9 10 11 12

# Store it as a matrix
matrix1 <- matrix(data = numbers, nrow = 3, byrow = TRUE)
print(matrix1)

## [,1] [,2] [,3] [,4]
## [1,] 1 2 3 4
## [2,] 5 6 7 8
## [3,] 9 10 11 12



Objects in R: matrix and data frame

# Basic information
class(matrix1)

## [1] "matrix" "array"

dim(matrix1) # dimensions

## [1] 3 4



Objects in R: matrix and data frame

# We can change the row/column names of matrices
rownames(matrix1)

## NULL

rownames(matrix1) <- c("row1", "row2", "row3")
print(matrix1)

## [,1] [,2] [,3] [,4]
## row1 1 2 3 4
## row2 5 6 7 8
## row3 9 10 11 12



Objects in R: matrix and data frame

# Automate any repetitive process
col_names <- paste0("column", 1:4)
print(col_names)

## [1] "column1" "column2" "column3" "column4"

colnames(matrix1) <- col_names
print(matrix1)

## column1 column2 column3 column4
## row1 1 2 3 4
## row2 5 6 7 8
## row3 9 10 11 12



Objects in R: matrix and data frame

# To augment the matrix with new column
column5 <- c(13, 14, 15)
matrix1 <- cbind(matrix1, column5)
print(matrix1)

## column1 column2 column3 column4 column5
## row1 1 2 3 4 13
## row2 5 6 7 8 14
## row3 9 10 11 12 15



Objects in R: matrix and data frame

# To augment the matrix with new row
row4 <- c("a", "b", "c", "d", "e")
matrix1 <- rbind(matrix1, row4)
print(matrix1)

## column1 column2 column3 column4 column5
## row1 "1" "2" "3" "4" "13"
## row2 "5" "6" "7" "8" "14"
## row3 "9" "10" "11" "12" "15"
## row4 "a" "b" "c" "d" "e"

Why do all vectors become characters?



Objects in R: matrix and data frame

▶ Matrices vs. data frames

▶ Matrices can only contain one homogenous type of vectors
▶ Data frames can contain heterogeneous types of vectors, and

thus are more flexible
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Objects in R: matrix and data frame

▶ Data frames can contain heterogeneous types of vectors, and
thus are more flexible

df1 <- data.frame(
names = c("Peter", "Paul", "Mary"),
age = c(14, 15, 16),
female = c(FALSE, FALSE, TRUE),
stringsAsFactors = FALSE

)

print(df1)

## names age female
## 1 Peter 14 FALSE
## 2 Paul 15 FALSE
## 3 Mary 16 TRUE



Objects in R: matrix and data frame

# Basic information
class(df1)

## [1] "data.frame"

dim(df1)

## [1] 3 3

str(df1)

## ’data.frame’: 3 obs. of 3 variables:
## $ names : chr "Peter" "Paul" "Mary"
## $ age : num 14 15 16
## $ female: logi FALSE FALSE TRUE



Objects in R: subsetting data
▶ There are several ways to subset data: row/column indices,

variable names, or evaluations

# 1) Subsetting by row/column indices
# For the element in row 1, column 1
df1[1, 1]

## [1] "Peter"

# For all elements in row 1, regardless of columns
df1[1, ]

## names age female
## 1 Peter 14 FALSE

# For all elements in column 1, regardless of rows
df1[, 1]

## [1] "Peter" "Paul" "Mary"



Objects in R: subsetting data

# 2) Subsetting by variable names
df1$names

## [1] "Peter" "Paul" "Mary"

df1$age

## [1] 14 15 16

df1$female

## [1] FALSE FALSE TRUE



Objects in R: subsetting data
# 3) Subsetting by evaluations
df1[df1$age >= 15, ]

## names age female
## 2 Paul 15 FALSE
## 3 Mary 16 TRUE

df1[df1$female == TRUE, ]

## names age female
## 3 Mary 16 TRUE

df1[df1$name %in% c("Peter", "Paul"), ]

## names age female
## 1 Peter 14 FALSE
## 2 Paul 15 FALSE



Objects in R: creating new variable in data frame
print(df1)

## names age female
## 1 Peter 14 FALSE
## 2 Paul 15 FALSE
## 3 Mary 16 TRUE

df1$edu

## NULL

df1$edu <- c("hs", "col", "phd")

print(df1)

## names age female edu
## 1 Peter 14 FALSE hs
## 2 Paul 15 FALSE col
## 3 Mary 16 TRUE phd



Summary of data structures in R

Homogeneous Heterogeneous

1d Atomic vector List
2d Matrix Data frame
nd Array

▶ Another important data structure: factor for categorical
data, which will be important for visualization purpose



Vector practices

▶ Create the following objects:

1. vector1: {a1, a2, a3, b1, b2, b3, c1, c2, c3 . . . z1, z2, z3}

▶ Hint: break downs the question into two parts; check out
function rep(..., times = ..., each = ...)

2. vector2: The sequence from 1 to 49 by an increment of 2

▶ Hint: check out function seq(...)
▶ Subset the 3rd, 16th, and 25th elements of the vector
▶ Subset those elements whose values are either smaller than 10,

or greater than 40
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▶ Subset those elements whose values are either smaller than 10,

or greater than 40



Vector practices
# Q1
chr <- rep(letters, each = 3)
print(chr)

## [1] "a" "a" "a" "b" "b" "b" "c" "c" "c" "d" "d"
## [12] "d" "e" "e" "e" "f" "f" "f" "g" "g" "g" "h"
## [23] "h" "h" "i" "i" "i" "j" "j" "j" "k" "k" "k"
## [34] "l" "l" "l" "m" "m" "m" "n" "n" "n" "o" "o"
## [45] "o" "p" "p" "p" "q" "q" "q" "r" "r" "r" "s"
## [56] "s" "s" "t" "t" "t" "u" "u" "u" "v" "v" "v"
## [67] "w" "w" "w" "x" "x" "x" "y" "y" "y" "z" "z"
## [78] "z"

num <- rep(1:3, times = length(letters))
print(num)

## [1] 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2
## [24] 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1
## [47] 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
## [70] 1 2 3 1 2 3 1 2 3



Vector practices

# Q1
vector1 <- paste0(chr, num)
print(vector1)

## [1] "a1" "a2" "a3" "b1" "b2" "b3" "c1" "c2" "c3"
## [10] "d1" "d2" "d3" "e1" "e2" "e3" "f1" "f2" "f3"
## [19] "g1" "g2" "g3" "h1" "h2" "h3" "i1" "i2" "i3"
## [28] "j1" "j2" "j3" "k1" "k2" "k3" "l1" "l2" "l3"
## [37] "m1" "m2" "m3" "n1" "n2" "n3" "o1" "o2" "o3"
## [46] "p1" "p2" "p3" "q1" "q2" "q3" "r1" "r2" "r3"
## [55] "s1" "s2" "s3" "t1" "t2" "t3" "u1" "u2" "u3"
## [64] "v1" "v2" "v3" "w1" "w2" "w3" "x1" "x2" "x3"
## [73] "y1" "y2" "y3" "z1" "z2" "z3"



Vector practices

# Q2
vector2 <- seq(from = 1, to = 49, by = 2)
print(vector2)

## [1] 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
## [16] 31 33 35 37 39 41 43 45 47 49

vector2[c(3, 16, 25)]

## [1] 5 31 49

vector2[vector2 < 10 | vector2 > 40]

## [1] 1 3 5 7 9 41 43 45 47 49



Vector practices

3. matrix1: a 5 by 5 matrix containing values from vector2

▶ Assign the row names: row_a, row_b, row_c, row_d, row_e
▶ Assign the column names: col1, col2, col3, col4, col5
▶ Multiply the values in the first column of matrix 1 by 100;

overwrite the original column
4. df1: a dataframe with two variables:

▶ country = {US, UK, CA, FR, IT}
▶ pop = {327, 66, 37, 67, 60}
▶ Subset top-three observations in term of the level of population
▶ Hint: check out function order(...)
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Vector practices

# Q3
matrix1 <- matrix(data = vector2, nrow = 5, ncol = 5)
rownames(matrix1) <- paste("row", letters[1:5], sep = "_")
colnames(matrix1) <- paste0("col", 1:5)
matrix1[, 1] <- matrix1[, 1] * 100
print(matrix1)

## col1 col2 col3 col4 col5
## row_a 100 11 21 31 41
## row_b 300 13 23 33 43
## row_c 500 15 25 35 45
## row_d 700 17 27 37 47
## row_e 900 19 29 39 49



Vector practices
# Q4
df1 <- data.frame(country = c("US", "UK", "CA", "FR", "IT"),

pop = c(327, 66, 37, 67, 60))
print(df1)

## country pop
## 1 US 327
## 2 UK 66
## 3 CA 37
## 4 FR 67
## 5 IT 60

order(df1$pop, decreasing = TRUE)

## [1] 1 4 2 5 3

top3 <- order(df1$pop, decreasing = TRUE)[1:3]
df1[top3, ]

## country pop
## 1 US 327
## 4 FR 67
## 2 UK 66



Workflow in R

▶ Usual workflow for data anlaysis (Grolemund and Wickham
2016):



Tidyverse and tidy data

▶ Tidyverse is a collection of packages designed for data
science with unified grammar and data structures

▶ Tidy data:

▶ Each variable must have its own column
▶ Each observation must have its own row
▶ Each value must have its own cell
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Tidyverse and tidy data

▶ To install Tidyverse package, run:

install.packages("tidyverse")

▶ To load a package, run (usually at the top of your R document):

library(tidyverse)



Importing data in R
# Load package
library(tidyverse)

# Load econ.csv
econ <- read_csv("econ.csv")

## Rows: 557 Columns: 4
## -- Column specification --------------------------
## Delimiter: ","
## chr (1): country
## dbl (3): GWn, year, gdpPercap
##
## i Use ‘spec()‘ to retrieve the full column specification for this data.
## i Specify the column types or set ‘show_col_types = FALSE‘ to quiet this message.

# tibble (tbl) is a special class of data frame
class(econ)

## [1] "spec_tbl_df" "tbl_df" "tbl"
## [4] "data.frame"



Importing data in R
# Get a sense of the dataset
glimpse(econ)

## Rows: 557
## Columns: 4
## $ country <chr> "Afghanistan", "Afghanistan", ~
## $ GWn <dbl> 700, 700, 700, 339, 615, 615, ~
## $ year <dbl> 1983, 1985, 1991, 2000, 1967, ~
## $ gdpPercap <dbl> 862.5477, 818.9504, 600.5932, ~

head(econ)

## # A tibble: 6 x 4
## country GWn year gdpPercap
## <chr> <dbl> <dbl> <dbl>
## 1 Afghanistan 700 1983 863.
## 2 Afghanistan 700 1985 819.
## 3 Afghanistan 700 1991 601.
## 4 Albania 339 2000 2962.
## 5 Algeria 615 1967 1824.
## 6 Algeria 615 1968 1977.



Basic data wrangling

▶ Below are just scratching the surface; check out

▶ Introductory course to tidyverse at DataCamp
▶ Cheat sheet for data wrangling
▶ R for Data Science

https://www.datacamp.com/courses/introduction-to-the-tidyverse
https://github.com/rstudio/cheatsheets/raw/master/data-transformation.pdf
https://r4ds.had.co.nz
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Basic data wrangling: count()

Count number of rows in each group:

econ %>%
count(country)

## # A tibble: 146 x 2
## country n
## <chr> <int>
## 1 Afghanistan 3
## 2 Albania 1
## 3 Algeria 5
## 4 Angola 3
## 5 Argentina 5
## 6 Australia 3
## 7 Austria 9
## 8 Bahrain 2
## 9 Bangladesh 5
## 10 Belarus (Byelorussia) 1
## # i 136 more rows



Basic data wrangling: %>%
▶ What is %>% (“pipe”)?

▶ x %>% fun(y) is equivalent to fun(x, y)
▶ Its advantage will be apparent when you perform numerous

steps of manipulation

count(econ, country) # Equivalent to econ %>% count(country)

## # A tibble: 146 x 2
## country n
## <chr> <int>
## 1 Afghanistan 3
## 2 Albania 1
## 3 Algeria 5
## 4 Angola 3
## 5 Argentina 5
## 6 Australia 3
## 7 Austria 9
## 8 Bahrain 2
## 9 Bangladesh 5
## 10 Belarus (Byelorussia) 1
## # i 136 more rows



Basic data wrangling: arrange()

Order rows by values of column(s) from low to high:

econ %>%
count(country) %>%
arrange(n) # Rather than: arrange(count(econ, country), n)

## # A tibble: 146 x 2
## country n
## <chr> <int>
## 1 Albania 1
## 2 Belarus (Byelorussia) 1
## 3 Cambodia (Kampuchea) 1
## 4 Central African Republic 1
## 5 Chile 1
## 6 China 1
## 7 Dominican Republic 1
## 8 Estonia 1
## 9 Gabon 1
## 10 Ghana 1
## # i 136 more rows



Basic data wrangling: arrange()

Order rows by values of column(s) from high to low:

econ %>%
count(country) %>%
arrange(desc(n))

## # A tibble: 146 x 2
## country n
## <chr> <int>
## 1 United States of America 112
## 2 Mexico 10
## 3 Austria 9
## 4 Uruguay 9
## 5 Philippines 8
## 6 Denmark 7
## 7 Norway 7
## 8 Portugal 7
## 9 Trinidad and Tobago 7
## 10 Venezuela 7
## # i 136 more rows



Basic data wrangling: filter()

Extract rows that meet logical criteria:

econ %>%
filter(country == "Brazil")

## # A tibble: 3 x 4
## country GWn year gdpPercap
## <chr> <dbl> <dbl> <dbl>
## 1 Brazil 140 1954 1848.
## 2 Brazil 140 1989 5224.
## 3 Brazil 140 2002 5481.



Basic data wrangling: filter()

Extract rows that meet multiple logical criteria:

econ %>%
filter(

country == "Brazil" | country == "Russia (Soviet Union)" |
country == "India" | country == "China"

)

## # A tibble: 9 x 4
## country GWn year gdpPercap
## <chr> <dbl> <dbl> <dbl>
## 1 Brazil 140 1954 1848.
## 2 Brazil 140 1989 5224.
## 3 Brazil 140 2002 5481.
## 4 China 710 1996 2892.
## 5 India 750 1943 698.
## 6 India 750 1961 758.
## 7 India 750 1992 1350.
## 8 Russia (Soviet Union) 365 1982 6536.
## 9 Russia (Soviet Union) 365 2005 7269.



Basic data wrangling: filter()

Alternatively:

econ %>%
filter(country %in% c("Brazil", "Russia (Soviet Union)", "India", "China"))

## # A tibble: 9 x 4
## country GWn year gdpPercap
## <chr> <dbl> <dbl> <dbl>
## 1 Brazil 140 1954 1848.
## 2 Brazil 140 1989 5224.
## 3 Brazil 140 2002 5481.
## 4 China 710 1996 2892.
## 5 India 750 1943 698.
## 6 India 750 1961 758.
## 7 India 750 1992 1350.
## 8 Russia (Soviet Union) 365 1982 6536.
## 9 Russia (Soviet Union) 365 2005 7269.



Basic data wrangling: select()

Extract columns (variables):

econ %>%
select(country, year, gdpPercap)

## # A tibble: 557 x 3
## country year gdpPercap
## <chr> <dbl> <dbl>
## 1 Afghanistan 1983 863.
## 2 Afghanistan 1985 819.
## 3 Afghanistan 1991 601.
## 4 Albania 2000 2962.
## 5 Algeria 1967 1824.
## 6 Algeria 1968 1977.
## 7 Algeria 1977 2759.
## 8 Algeria 1986 3301.
## 9 Algeria 2006 3386.
## 10 Angola 1953 1126.
## # i 547 more rows



Basic data wrangling: filter() & select()
Filter USA observations from 2000 to 2010 with year and
gdpPercap as the only variables:
USAdata <- econ %>%

filter(country == "United States of America",
year %in% 2000:2010) %>%

select(year, gdpPercap)

print(USAdata)

## # A tibble: 11 x 2
## year gdpPercap
## <dbl> <dbl>
## 1 2000 28702.
## 2 2001 28726.
## 3 2002 28977.
## 4 2003 29459.
## 5 2004 30200.
## 6 2005 30842.
## 7 2006 31358.
## 8 2007 31655.
## 9 2008 31251.
## 10 2009 29899.
## 11 2010 30491.



Basic data wrangling: summarize()

Compute table of summaries:

USAdata %>%
summarize(avg_gdpPercap = mean(gdpPercap))

## # A tibble: 1 x 1
## avg_gdpPercap
## <dbl>
## 1 30142.

What if we want to calculate the average GDP per capita for all
countries in our data set?



Basic data wrangling: group_by() & summarize()
▶ Create a grouped version of the table with group_by()

▶ Subsequent functions will manipulate each group separately

econ %>%
group_by(country) %>%
summarize(avg_gdpPercap = mean(gdpPercap)) %>%
arrange(desc(avg_gdpPercap))

## # A tibble: 146 x 2
## country avg_gdpPercap
## <chr> <dbl>
## 1 Qatar 39157.
## 2 Kuwait 16288.
## 3 German Federal Republic 15739.
## 4 Norway 14846.
## 5 Ireland 14353.
## 6 Belarus (Byelorussia) 13659.
## 7 United States of America 13623.
## 8 United Arab Emirates 12812.
## 9 Belgium 12053.
## 10 Austria 11794.
## # i 136 more rows



Basic data wrangling: more summarize()

What if we want to know the numbers of distinct countries and
years in the data set?

econ %>%
summarize_at(c("country", "year"), n_distinct)

## # A tibble: 1 x 2
## country year
## <int> <int>
## 1 146 111



Basic data wrangling: mutate()
Compute new columns (variables):

econ %>%
mutate(

id = row_number(),
decade = year %/% 10 * 10

) %>%
select(id, country, GWn, year, decade, gdpPercap)

## # A tibble: 557 x 6
## id country GWn year decade gdpPercap
## <int> <chr> <dbl> <dbl> <dbl> <dbl>
## 1 1 Afghanistan 700 1983 1980 863.
## 2 2 Afghanistan 700 1985 1980 819.
## 3 3 Afghanistan 700 1991 1990 601.
## 4 4 Albania 339 2000 2000 2962.
## 5 5 Algeria 615 1967 1960 1824.
## 6 6 Algeria 615 1968 1960 1977.
## 7 7 Algeria 615 1977 1970 2759.
## 8 8 Algeria 615 1986 1980 3301.
## 9 9 Algeria 615 2006 2000 3386.
## 10 10 Angola 540 1953 1950 1126.
## # i 547 more rows



Basic data wrangling: group_by() & summarize()
What if we want to know countries’ average GDP per capita over
decades?
econ %>%

mutate(decade = year %/% 10 * 10) %>%
group_by(country, decade) %>%
summarize(decAvg_gdp = mean(gdpPercap))

## ‘summarise()‘ has grouped output by ’country’.
## You can override using the ‘.groups‘ argument.

## # A tibble: 382 x 3
## # Groups: country [146]
## country decade decAvg_gdp
## <chr> <dbl> <dbl>
## 1 Afghanistan 1980 841.
## 2 Afghanistan 1990 601.
## 3 Albania 2000 2962.
## 4 Algeria 1960 1901.
## 5 Algeria 1970 2759.
## 6 Algeria 1980 3301.
## 7 Algeria 2000 3386.
## 8 Angola 1950 1161.
## 9 Angola 2000 825.
## 10 Argentina 1900 2992.
## # i 372 more rows



Saving wrangled data

When you save the wrangled data, don’t overwrite the original
data with the same file name:

write_csv(econ, "econ_wrangled.csv")



Intermediate data wranggling: second data set
pop <- read_csv("pop.csv")
head(pop)

## # A tibble: 6 x 5
## country GWn year pop region
## <chr> <dbl> <dbl> <dbl> <chr>
## 1 Afghanistan 700 1983 15177000 Asia: Southern Asia
## 2 Afghanistan 700 1985 14519000 Asia: Southern Asia
## 3 Afghanistan 700 1991 15403000 Asia: Southern Asia
## 4 Albania 339 2000 3113000 Europe: Southern Europe
## 5 Algeria 615 1967 13078000 Africa: Northern Africa
## 6 Algeria 615 1968 13495000 Africa: Northern Africa

# Compare with econ
head(econ)

## # A tibble: 6 x 4
## country GWn year gdpPercap
## <chr> <dbl> <dbl> <dbl>
## 1 Afghanistan 700 1983 863.
## 2 Afghanistan 700 1985 819.
## 3 Afghanistan 700 1991 601.
## 4 Albania 339 2000 2962.
## 5 Algeria 615 1967 1824.
## 6 Algeria 615 1968 1977.



Intermediate data wranggling: join family
How do we combine two data sets such that:

## Warning in left_join(., pop, by = c("GWn", "year")): Detected an unexpected many-to-many relationship between ‘x‘ and ‘y‘.
## i Row 510 of ‘x‘ matches multiple rows in ‘y‘.
## i Row 510 of ‘y‘ matches multiple rows in ‘x‘.
## i If a many-to-many relationship is expected, set ‘relationship = "many-to-many"‘ to silence this warning.

## # A tibble: 559 x 6
## country GWn year gdpPercap pop region
## <chr> <dbl> <dbl> <dbl> <dbl> <chr>
## 1 Afghanistan 700 1983 863. 15177000 Asia: Southern Asia
## 2 Afghanistan 700 1985 819. 14519000 Asia: Southern Asia
## 3 Afghanistan 700 1991 601. 15403000 Asia: Southern Asia
## 4 Albania 339 2000 2962. 3113000 Europe: Southern Europe
## 5 Algeria 615 1967 1824. 13078000 Africa: Northern Africa
## 6 Algeria 615 1968 1977. 13495000 Africa: Northern Africa
## 7 Algeria 615 1977 2759. 17058000 Africa: Northern Africa
## 8 Algeria 615 1986 3301. 22520000 Africa: Northern Africa
## 9 Algeria 615 2006 3386. 33749328 Africa: Northern Africa
## 10 Angola 540 1953 1126. NA NA: NA
## # i 549 more rows



Intermediate data wranggling: join family
Family of join functions: inner_join, left_join, right_join,
full_join. . .
data <- econ %>%

left_join(pop, by = c("GWn", "year")) %>%
select(-country.y) %>%
rename(country = country.x)

## Warning in left_join(., pop, by = c("GWn", "year")): Detected an unexpected many-to-many relationship between ‘x‘ and ‘y‘.
## i Row 510 of ‘x‘ matches multiple rows in ‘y‘.
## i Row 510 of ‘y‘ matches multiple rows in ‘x‘.
## i If a many-to-many relationship is expected, set ‘relationship = "many-to-many"‘ to silence this warning.

## # A tibble: 559 x 6
## country GWn year gdpPercap pop region
## <chr> <dbl> <dbl> <dbl> <dbl> <chr>
## 1 Afghanistan 700 1983 863. 15177000 Asia: Southern Asia
## 2 Afghanistan 700 1985 819. 14519000 Asia: Southern Asia
## 3 Afghanistan 700 1991 601. 15403000 Asia: Southern Asia
## 4 Albania 339 2000 2962. 3113000 Europe: Southern Europe
## 5 Algeria 615 1967 1824. 13078000 Africa: Northern Africa
## 6 Algeria 615 1968 1977. 13495000 Africa: Northern Africa
## 7 Algeria 615 1977 2759. 17058000 Africa: Northern Africa
## 8 Algeria 615 1986 3301. 22520000 Africa: Northern Africa
## 9 Algeria 615 2006 3386. 33749328 Africa: Northern Africa
## 10 Angola 540 1953 1126. NA NA: NA
## # i 549 more rows



Intermediate data wranggling: separate (or Regex)

How to separate the region column into continent and
sub_region?

## # A tibble: 559 x 7
## country GWn year gdpPercap pop continent sub_region
## <chr> <dbl> <dbl> <dbl> <dbl> <chr> <chr>
## 1 Afghanistan 700 1983 863. 15177000 Asia Southern Asia
## 2 Afghanistan 700 1985 819. 14519000 Asia Southern Asia
## 3 Afghanistan 700 1991 601. 15403000 Asia Southern Asia
## 4 Albania 339 2000 2962. 3113000 Europe Southern Europe
## 5 Algeria 615 1967 1824. 13078000 Africa Northern Africa
## 6 Algeria 615 1968 1977. 13495000 Africa Northern Africa
## 7 Algeria 615 1977 2759. 17058000 Africa Northern Africa
## 8 Algeria 615 1986 3301. 22520000 Africa Northern Africa
## 9 Algeria 615 2006 3386. 33749328 Africa Northern Africa
## 10 Angola 540 1953 1126. NA NA NA
## # i 549 more rows



Intermediate data wranggling: separate (or Regex)

How to separate the region column into continent and
sub_region?

data %>%
separate(region, into = c("continent", "sub_region"), sep = ": ")

## # A tibble: 559 x 7
## country GWn year gdpPercap pop continent sub_region
## <chr> <dbl> <dbl> <dbl> <dbl> <chr> <chr>
## 1 Afghanistan 700 1983 863. 15177000 Asia Southern Asia
## 2 Afghanistan 700 1985 819. 14519000 Asia Southern Asia
## 3 Afghanistan 700 1991 601. 15403000 Asia Southern Asia
## 4 Albania 339 2000 2962. 3113000 Europe Southern Europe
## 5 Algeria 615 1967 1824. 13078000 Africa Northern Africa
## 6 Algeria 615 1968 1977. 13495000 Africa Northern Africa
## 7 Algeria 615 1977 2759. 17058000 Africa Northern Africa
## 8 Algeria 615 1986 3301. 22520000 Africa Northern Africa
## 9 Algeria 615 2006 3386. 33749328 Africa Northern Africa
## 10 Angola 540 1953 1126. NA NA NA
## # i 549 more rows



Intermediate data wranggling: separate (or Regex)
How to separate the region column into continent and
sub_region?

# Or using regular expression
data %>%

mutate(continent = str_extract(region, ".*(?=: )"),
sub_region = str_extract(region, "(?<=: ).*")) %>%

select(-region)

## # A tibble: 559 x 7
## country GWn year gdpPercap pop continent sub_region
## <chr> <dbl> <dbl> <dbl> <dbl> <chr> <chr>
## 1 Afghanistan 700 1983 863. 15177000 Asia Southern Asia
## 2 Afghanistan 700 1985 819. 14519000 Asia Southern Asia
## 3 Afghanistan 700 1991 601. 15403000 Asia Southern Asia
## 4 Albania 339 2000 2962. 3113000 Europe Southern Europe
## 5 Algeria 615 1967 1824. 13078000 Africa Northern Africa
## 6 Algeria 615 1968 1977. 13495000 Africa Northern Africa
## 7 Algeria 615 1977 2759. 17058000 Africa Northern Africa
## 8 Algeria 615 1986 3301. 22520000 Africa Northern Africa
## 9 Algeria 615 2006 3386. 33749328 Africa Northern Africa
## 10 Angola 540 1953 1126. NA NA NA
## # i 549 more rows



Intermediate data wranggling: case_when

▶ How to convert pop into a new categorical variable, called
popCat:

▶ Countries with pop value lower than the first quartile of all pop
is classified as “low”

▶ Countries with pop value equal to or higher than the first
quartile, but lower than the third quartile is classified as
“middle”

▶ Countries with pop value equal to or higher than the third
quartile is classified as “high”
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Intermediate data wranggling: case_when

▶ How to convert pop into a new categorical variable, called
popCat:
▶ Countries with pop value lower than the first quartile of all pop

is classified as “low”
▶ Countries with pop value equal to or higher than the first

quartile, but lower than the third quartile is classified as
“middle”

▶ Countries with pop value equal to or higher than the third
quartile is classified as “high”



Intermediate data wranggling: case_when
Qts <- quantile(data$pop, prob = c(0.25, 0.75), na.rm = TRUE)
print(Qts)

## 25% 75%
## 3805000 81896000

Q1 <- Qts[1]
Q3 <- Qts[2]

data <- data %>%
mutate(popCat = case_when(pop < Q1 ~ "low",

pop >= Q1 & pop < Q3 ~ "middle",
pop > Q3 ~ "high"))

## # A tibble: 559 x 8
## country GWn year gdpPercap pop continent sub_region popCat
## <chr> <dbl> <dbl> <dbl> <dbl> <chr> <chr> <chr>
## 1 Afghanistan 700 1983 863. 15177000 Asia Southern Asia middle
## 2 Afghanistan 700 1985 819. 14519000 Asia Southern Asia middle
## 3 Afghanistan 700 1991 601. 15403000 Asia Southern Asia middle
## 4 Albania 339 2000 2962. 3113000 Europe Southern Europe low
## 5 Algeria 615 1967 1824. 13078000 Africa Northern Africa middle
## 6 Algeria 615 1968 1977. 13495000 Africa Northern Africa middle
## 7 Algeria 615 1977 2759. 17058000 Africa Northern Africa middle
## 8 Algeria 615 1986 3301. 22520000 Africa Northern Africa middle
## 9 Algeria 615 2006 3386. 33749328 Africa Northern Africa middle
## 10 Angola 540 1953 1126. NA NA NA <NA>
## # i 549 more rows



Intermediate data wranggling: mutate and lag

Focus on USA data again. How to create a variable, named
growth, thats computes the percentage change in gdpPercap
compared to the immediate last year?

## # A tibble: 114 x 4
## country year gdpPercap growth
## <chr> <dbl> <dbl> <dbl>
## 1 United States of America 1900 4091. NA
## 2 United States of America 1901 4464. 0.0912
## 3 United States of America 1902 4421. -0.00969
## 4 United States of America 1903 4551. 0.0295
## 5 United States of America 1904 4410. -0.0311
## 6 United States of America 1905 4642. 0.0528
## 7 United States of America 1906 5079. 0.0941
## 8 United States of America 1907 5065. -0.00280
## 9 United States of America 1908 4561. -0.0996
## 10 United States of America 1909 5017. 0.100
## # i 104 more rows



Intermediate data wranggling: mutate and lag
# Extract USA data
USAdata <- data %>%

filter(country == "United States of America") %>%
select(country, year, gdpPercap)

# Use `lag` to create a column of gdpPercap in past year
USAdata <- USAdata %>%

mutate(gdpPercap_lag1 = lag(gdpPercap, n = 1))

print(USAdata)

## # A tibble: 114 x 4
## country year gdpPercap gdpPercap_lag1
## <chr> <dbl> <dbl> <dbl>
## 1 United States of America 1900 4091. NA
## 2 United States of America 1901 4464. 4091.
## 3 United States of America 1902 4421. 4464.
## 4 United States of America 1903 4551. 4421.
## 5 United States of America 1904 4410. 4551.
## 6 United States of America 1905 4642. 4410.
## 7 United States of America 1906 5079. 4642.
## 8 United States of America 1907 5065. 5079.
## 9 United States of America 1908 4561. 5065.
## 10 United States of America 1909 5017. 4561.
## # i 104 more rows



Intermediate data wranggling: mutate and lag

USAdata <- USAdata %>%
mutate(growth = (gdpPercap - gdpPercap_lag1) / gdpPercap_lag1)

print(USAdata)

## # A tibble: 114 x 5
## country year gdpPercap gdpPercap_lag1 growth
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 United States of America 1900 4091. NA NA
## 2 United States of America 1901 4464. 4091. 0.0912
## 3 United States of America 1902 4421. 4464. -0.00969
## 4 United States of America 1903 4551. 4421. 0.0295
## 5 United States of America 1904 4410. 4551. -0.0311
## 6 United States of America 1905 4642. 4410. 0.0528
## 7 United States of America 1906 5079. 4642. 0.0941
## 8 United States of America 1907 5065. 5079. -0.00280
## 9 United States of America 1908 4561. 5065. -0.0996
## 10 United States of America 1909 5017. 4561. 0.100
## # i 104 more rows
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