
CSSS 569 Visualizing Data and Models
Lab 8: Interactive Visual Display with R + Shiny

Ramses Llobet

Department of Political Science, UW

February 27, 2025

Basic structure of a Shiny app
▶ Four lines to build a Shiny app

library(shiny)
ui <- fluidPage(...)
server <- function(input, output) {...}
shinyApp(ui = ui, server = server)

1. ui: front end interface
▶ Inside fluidPage()
▶ Input and Output functions
▶ Others: Layout functions

2. server function: back end logic
▶ Access input values via input$... in a reactive context
▶ Create output values via render() or reactive() in a

reactive context
▶ Within render() or reactive(), write code to perform some

tasks
▶ Store them as elements of output via output$...

Basic structure of a Shiny app
▶ Four lines to build a Shiny app

library(shiny)
ui <- fluidPage(...)
server <- function(input, output) {...}
shinyApp(ui = ui, server = server)

1. ui: front end interface

▶ Inside fluidPage()
▶ Input and Output functions
▶ Others: Layout functions

2. server function: back end logic
▶ Access input values via input$... in a reactive context
▶ Create output values via render() or reactive() in a

reactive context
▶ Within render() or reactive(), write code to perform some

tasks
▶ Store them as elements of output via output$...

Basic structure of a Shiny app
▶ Four lines to build a Shiny app

library(shiny)
ui <- fluidPage(...)
server <- function(input, output) {...}
shinyApp(ui = ui, server = server)

1. ui: front end interface
▶ Inside fluidPage()

▶ Input and Output functions
▶ Others: Layout functions

2. server function: back end logic
▶ Access input values via input$... in a reactive context
▶ Create output values via render() or reactive() in a

reactive context
▶ Within render() or reactive(), write code to perform some

tasks
▶ Store them as elements of output via output$...

Basic structure of a Shiny app
▶ Four lines to build a Shiny app

library(shiny)
ui <- fluidPage(...)
server <- function(input, output) {...}
shinyApp(ui = ui, server = server)

1. ui: front end interface
▶ Inside fluidPage()
▶ Input and Output functions

▶ Others: Layout functions
2. server function: back end logic

▶ Access input values via input$... in a reactive context
▶ Create output values via render() or reactive() in a

reactive context
▶ Within render() or reactive(), write code to perform some

tasks
▶ Store them as elements of output via output$...

Basic structure of a Shiny app
▶ Four lines to build a Shiny app

library(shiny)
ui <- fluidPage(...)
server <- function(input, output) {...}
shinyApp(ui = ui, server = server)

1. ui: front end interface
▶ Inside fluidPage()
▶ Input and Output functions
▶ Others: Layout functions

2. server function: back end logic
▶ Access input values via input$... in a reactive context
▶ Create output values via render() or reactive() in a

reactive context
▶ Within render() or reactive(), write code to perform some

tasks
▶ Store them as elements of output via output$...

Basic structure of a Shiny app
▶ Four lines to build a Shiny app

library(shiny)
ui <- fluidPage(...)
server <- function(input, output) {...}
shinyApp(ui = ui, server = server)

1. ui: front end interface
▶ Inside fluidPage()
▶ Input and Output functions
▶ Others: Layout functions

2. server function: back end logic

▶ Access input values via input$... in a reactive context
▶ Create output values via render() or reactive() in a

reactive context
▶ Within render() or reactive(), write code to perform some

tasks
▶ Store them as elements of output via output$...

Basic structure of a Shiny app
▶ Four lines to build a Shiny app

library(shiny)
ui <- fluidPage(...)
server <- function(input, output) {...}
shinyApp(ui = ui, server = server)

1. ui: front end interface
▶ Inside fluidPage()
▶ Input and Output functions
▶ Others: Layout functions

2. server function: back end logic
▶ Access input values via input$... in a reactive context

▶ Create output values via render() or reactive() in a
reactive context

▶ Within render() or reactive(), write code to perform some
tasks

▶ Store them as elements of output via output$...

Basic structure of a Shiny app
▶ Four lines to build a Shiny app

library(shiny)
ui <- fluidPage(...)
server <- function(input, output) {...}
shinyApp(ui = ui, server = server)

1. ui: front end interface
▶ Inside fluidPage()
▶ Input and Output functions
▶ Others: Layout functions

2. server function: back end logic
▶ Access input values via input$... in a reactive context
▶ Create output values via render() or reactive() in a

reactive context

▶ Within render() or reactive(), write code to perform some
tasks

▶ Store them as elements of output via output$...

Basic structure of a Shiny app
▶ Four lines to build a Shiny app

library(shiny)
ui <- fluidPage(...)
server <- function(input, output) {...}
shinyApp(ui = ui, server = server)

1. ui: front end interface
▶ Inside fluidPage()
▶ Input and Output functions
▶ Others: Layout functions

2. server function: back end logic
▶ Access input values via input$... in a reactive context
▶ Create output values via render() or reactive() in a

reactive context
▶ Within render() or reactive(), write code to perform some

tasks

▶ Store them as elements of output via output$...

Basic structure of a Shiny app
▶ Four lines to build a Shiny app

library(shiny)
ui <- fluidPage(...)
server <- function(input, output) {...}
shinyApp(ui = ui, server = server)

1. ui: front end interface
▶ Inside fluidPage()
▶ Input and Output functions
▶ Others: Layout functions

2. server function: back end logic
▶ Access input values via input$... in a reactive context
▶ Create output values via render() or reactive() in a

reactive context
▶ Within render() or reactive(), write code to perform some

tasks
▶ Store them as elements of output via output$...

What is reactivity?

▶ Reactivity: connecting inputs to outputs
▶ Allow outputs to automatically update when an input is

changed by the users
▶ Output has a reactive dependency on input
▶ You can’t read input$... or modify output$... outside of

a reactive context

What is reactivity?

▶ Reactivity: connecting inputs to outputs

▶ Allow outputs to automatically update when an input is
changed by the users

▶ Output has a reactive dependency on input
▶ You can’t read input$... or modify output$... outside of

a reactive context

What is reactivity?

▶ Reactivity: connecting inputs to outputs
▶ Allow outputs to automatically update when an input is

changed by the users

▶ Output has a reactive dependency on input
▶ You can’t read input$... or modify output$... outside of

a reactive context

What is reactivity?

▶ Reactivity: connecting inputs to outputs
▶ Allow outputs to automatically update when an input is

changed by the users
▶ Output has a reactive dependency on input

▶ You can’t read input$... or modify output$... outside of
a reactive context

What is reactivity?

▶ Reactivity: connecting inputs to outputs
▶ Allow outputs to automatically update when an input is

changed by the users
▶ Output has a reactive dependency on input
▶ You can’t read input$... or modify output$... outside of

a reactive context

Basic Input functions

▶ Taken from R Studio Shiny tutorial
▶ See more in Shiny Widgets Gallery

https://shiny.posit.co/r/getstarted/shiny-basics/lesson1/
https://shiny.rstudio.com/gallery/widget-gallery.html

Basic Output and render functions

Output functions Insert Corresponding render

dataTableOutput() an interactive table renderDataTable()
imageOutput() image renderImage()

plotOutput() plot renderPlot()
tableOutput() table renderTable()
textOutput() text renderText()

verbatimTextOutput() text renderText()
uiOutput() a Shiny UI element renderUI()

htmlOutput() raw HTML renderUI()

Practice time!

▶ Start with these four lines of code:

library(shiny)

ui <- fluidPage()

server <- function(input, output) {}

shinyApp(ui = ui, server = server)

Layouts in UI: Sidebar Layout

▶ See more here Application layout guide

ui <- fluidPage(

titlePanel("Hello Shiny!"),

sidebarLayout(

sidebarPanel(
sliderInput("obs", "Number of observations:",

min = 1, max = 1000, value = 500)
),

mainPanel(
plotOutput("distPlot")

)
)

)

https://shiny.rstudio.com/articles/layout-guide.html

Layouts in UI: Sidebar Layout

Layouts in UI: Tabsets

ui <- fluidPage(

titlePanel("Tabsets"),

sidebarLayout(

sidebarPanel(
Inputs excluded for brevity

),

mainPanel(
tabsetPanel(

tabPanel("Plot", plotOutput("plot")),
tabPanel("Summary", verbatimTextOutput("summary")),
tabPanel("Table", tableOutput("table"))

)
)

)
)

Layouts in UI: Tabsets

Extension packages to check out

▶ plotly for interactive plots (e.g. hovering over points)
▶ highcharter for R wrapper for Highcharts javascript library
▶ shinyWidgets for even more widgets
▶ shinythemes for Shiny themes
▶ A complete list of extension packages here

https://plotly.com/r/
https://jkunst.com/highcharter/
https://shinyapps.dreamrs.fr/shinyWidgets/
https://rstudio.github.io/shinythemes/
https://github.com/nanxstats/awesome-shiny-extensions

Other ressources

Introductory book on R Shiny:

▶ Wickham (2021) - Mastering Shiny

Deployment of Shiny apps on the web:

▶ Hosting and deployment.
▶ Deploying Shiny apps to the web
▶ How to publish a Shiny app? An example with shinyapps.io.
▶ Deploy Shiny App on Github Pages

You can also find video tutorials in YouTube!

https://mastering-shiny.org/index.html
https://shiny.posit.co/r/deploy.html
https://shiny.posit.co/r/articles/share/deployment-web/
https://statsandr.com/blog/how-to-publish-shiny-app-example-with-shinyapps-io/
https://medium.com/@rami.krispin/deploy-shiny-app-on-github-pages-b4cbd433bdc

