CSSS 569 Visualizing Data and Models
Lab 1: Supplemental R resource

Ramses Llobet1

Department of Political Science, UW

January 7, 2022

1Originally provided by former TA Brian Leung.
Useful R resources

▶ R

▶ R for Data Science (Grolemund and Wickham 2016)

▶ Quantitative Social Science: An Introduction (Imai 2017)

▶ DataCamp: https://www.datacamp.com

▶ R cheat sheets: https://rstudio.com/resources/cheatsheets/

▶ R Markdown

▶ R Markdown: The Definitive Guide (Xie, Allaire, and Grolemund 2019)

▶ Data visualization

▶ Data Visualization: A Practical Introduction (Healy 2018)

▶ Fundamentals of Data Visualization: A Primer on Making Informative and Compelling Figures (Wilke 2019)

▶ Others

▶ Stack Overflow: https://stackoverflow.com

▶ TidyTuesday Project: https://github.com/rfordatascience/tidytuesday
Useful R resources

- R
 - R for Data Science (Grolemund and Wickham 2016)
Useful R resources

- R
 - *R for Data Science* (Grolemund and Wickham 2016)
 - *Quantitative Social Science: An Introduction* (Imai 2017)
Useful R resources

- R
 - *R for Data Science* (Grolemund and Wickham 2016)
 - *Quantitative Social Science: An Introduction* (Imai 2017)
 - DataCamp: https://www.datacamp.com

- R cheat sheets: https://rstudio.com/resources/cheatsheets/

- R Markdown

- Data visualization
 - *Data Visualization: A Practical Introduction* (Healy 2018)
 - *Fundamentals of Data Visualization: A Primer on Making Informative and Compelling Figures* (Wilke 2019)

- Others
 - Stack Overflow: https://stackoverflow.com
 - TidyTuesday Project: https://github.com/rfordatascience/tidytuesday
Useful R resources

▶ R
 ▶ R for Data Science (Grolemund and Wickham 2016)
 ▶ Quantitative Social Science : An Introduction (Imai 2017)
 ▶ DataCamp: https://www.datacamp.com
 ▶ R cheat sheets: https://rstudio.com/resources/cheatsheets/
 ▶ R Markdown
 ▶ R Markdown: The Definitive Guide (Xie, Allaire, and Grolemund 2019)
 ▶ Data visualization
 ▶ Data Visualization: A Practical Introduction (Healy 2018)
 ▶ Fundamentals of Data Visualization: A Primer on Making Informative and Compelling Figures (Wilke 2019)
 ▶ Others
 ▶ Stack Overflow: https://stackoverflow.com
 ▶ TidyTuesday Project: https://github.com/rfordatascience/tidytuesday
Useful R resources

- R
 - R for Data Science (Grolemund and Wickham 2016)
 - Quantitative Social Science: An Introduction (Imai 2017)
 - DataCamp: https://www.datacamp.com
 - R cheat sheets: https://rstudio.com/resources/cheatsheets/

- R Markdown
 - R Markdown: The Definitive Guide (Xie, Allaire, and Grolemund 2019)
 - Data visualization
 - Data Visualization: A Practical Introduction (Healy 2018)
 - Fundamentals of Data Visualization: A Primer on Making Informative and Compelling Figures (Wilke 2019)

- Others
 - Stack Overflow: https://stackoverflow.com
 - TidyTuesday Project: https://github.com/rfordatascience/tidytuesday
Useful R resources

- R
 - R for Data Science (Grolemund and Wickham 2016)
 - Quantitative Social Science: An Introduction (Imai 2017)
 - DataCamp: https://www.datacamp.com
 - R cheat sheets: https://rstudio.com/resources/cheatsheets/

- R Markdown
 - R Markdown: The Definitive Guide (Xie, Allaire, and Grolemund 2019)
Useful R resources

- **R**
 - *R for Data Science* (Grolemund and Wickham 2016)
 - *Quantitative Social Science : An Introduction* (Imai 2017)
 - DataCamp: https://www.datacamp.com
 - R cheat sheets: https://rstudio.com/resources/cheatsheets/

- **R Markdown**

- Data visualization
Useful R resources

- R
 - *R for Data Science* (Grolemund and Wickham 2016)
 - *Quantitative Social Science: An Introduction* (Imai 2017)
 - DataCamp: https://www.datacamp.com
 - R cheat sheets: https://rstudio.com/resources/cheatsheets/

- R Markdown

- Data visualization
 - *Data Visualization: A Practical Introduction* (Healy 2018)
Useful R resources

▶ R
 ▶ R for Data Science (Grolemund and Wickham 2016)
 ▶ Quantitative Social Science: An Introduction (Imai 2017)
 ▶ DataCamp: https://www.datacamp.com
 ▶ R cheat sheets: https://rstudio.com/resources/cheatsheets/

▶ R Markdown
 ▶ R Markdown: The Definitive Guide (Xie, Allaire, and Grolemund 2019)

▶ Data visualization
 ▶ Data Visualization: A Practical Introduction (Healy 2018)
 ▶ Fundamentals of Data Visualization: A Primer on Making Informative and Compelling Figures (Wilke 2019)
Useful R resources

▶ R
 ▶ *R for Data Science* (Grolemund and Wickham 2016)
 ▶ *Quantitative Social Science: An Introduction* (Imai 2017)
 ▶ DataCamp: https://www.datacamp.com
 ▶ R cheat sheets: https://rstudio.com/resources/cheatsheets/

▶ R Markdown

▶ Data visualization
 ▶ *Data Visualization: A Practical Introduction* (Healy 2018)
 ▶ *Fundamentals of Data Visualization: A Primer on Making Informative and Compelling Figures* (Wilke 2019)

▶ Others
Useful R resources

▶ R
 ▶ R for Data Science (Grolemund and Wickham 2016)
 ▶ Quantitative Social Science: An Introduction (Imai 2017)
 ▶ DataCamp: https://www.datacamp.com
 ▶ R cheat sheets: https://rstudio.com/resources/cheatsheets/

▶ R Markdown
 ▶ R Markdown: The Definitive Guide (Xie, Allaire, and Grolemund 2019)

▶ Data visualization
 ▶ Data Visualization: A Practical Introduction (Healy 2018)
 ▶ Fundamentals of Data Visualization: A Primer on Making Informative and Compelling Figures (Wilke 2019)

▶ Others
 ▶ Stack Overflow: https://stackoverflow.com
Useful R resources

- **R**
 - *R for Data Science* (Grolemund and Wickham 2016)
 - *Quantitative Social Science: An Introduction* (Imai 2017)
 - DataCamp: https://www.datacamp.com
 - R cheat sheets: https://rstudio.com/resources/cheatsheets/

- **R Markdown**

- **Data visualization**
 - *Data Visualization: A Practical Introduction* (Healy 2018)
 - *Fundamentals of Data Visualization: A Primer on Making Informative and Compelling Figures* (Wilke 2019)

- **Others**
 - Stack Overflow: https://stackoverflow.com
 - TidyTuesday Project: https://github.com/rfordatascience/tidytuesday
R boot camp

- R is a language and environment for statistical computing and graphics
R boot camp

- R is a language and environment for statistical computing and graphics
 - *Object-oriented* style of programming
R boot camp

- R is a language and environment for statistical computing and graphics
 - *Object-oriented* style of programming
 - System-supplied or user-defined functionality as *functions*
R boot camp

- R is a language and environment for statistical computing and graphics
 - *Object-oriented* style of programming
 - System-supplied or user-defined functionality as *functions*
 - Extended via *packages*
R boot camp

R is a language and environment for statistical computing and graphics

- *Object-oriented* style of programming
- System-supplied or user-defined functionality as *functions*
- Extended via *packages*

RStudio is an integrated development environment for R, which includes:

- A console to run R code
- An editor to write code and text
- Tools for plotting, history, debugging and workspace management
R boot camp

- R is a language and environment for statistical computing and graphics
 - *Object-oriented* style of programming
 - System-supplied or user-defined functionality as *functions*
 - Extended via *packages*
- RStudio is an integrated development environment for R, which includes:
 - a console to run R code
R boot camp

- R is a language and environment for statistical computing and graphics
 - *Object-oriented* style of programming
 - System-supplied or user-defined functionality as *functions*
 - Extended via *packages*

- RStudio is an integrated development environment for R, which includes:
 - A console to run R code
 - An editor to write code and text
R boot camp

- R is a language and environment for statistical computing and graphics
 - *Object-oriented* style of programming
 - System-supplied or user-defined functionality as *functions*
 - Extended via *packages*

- RStudio is an integrated development environment for R, which includes:
 - A console to run R code
 - An editor to write code and text
 - Tools for plotting, history, debugging and workspace management

Let's open RStudio and a plain R Script.
R boot camp

- R is a language and environment for statistical computing and graphics
 - Object-oriented style of programming
 - System-supplied or user-defined functionality as functions
 - Extended via packages
- RStudio is an integrated development environment for R, which includes:
 - a console to run R code
 - an editor to write code and text
 - tools for plotting, history, debugging and workspace management
- Let's open RStudio and a plain R Script
Running R code and operators

Arithmetic Operators
1 + 1

[1] 2

2 * 8

[1] 16

9 / 3

[1] 3

2^3

[1] 8
Running R code and operators

Relational Operators

10 > 8

[1] TRUE

7 <= 6

[1] FALSE

(2 * 5) == 10

[1] TRUE

1 != 2

[1] TRUE
Objects in R: vectors and assignment

```r
# Concatenate vectors into a new vector
c(1, 2, 3)

## [1] 1 2 3

# Assign them to a new object for manipulation
x <- c(1, 2, 3)
print(x) # or simply, x

## [1] 1 2 3

# Operators on vector
x + 1

## [1] 2 3 4

x == 1

## [1] TRUE FALSE FALSE
```

[1] TRUE FALSE FALSE
Use an object as input to a function

```r
x <- c(1, 2, 3)

class(x)
```

```r
## [1] "numeric"
```

```r
length(x)
```

```r
## [1] 3
```

```r
mean(x)
```

```r
## [1] 2
```
Objects in R: three beginner tips

1. Unless you assign (\texttt{<-}) some operations or transformations to an object, those chances will not be registered

```r
x <- c(1, 2, 3)
print(x + 1)
## [1] 2 3 4

print(x)
## [1] 1 2 3

x <- x + 1
print(x)
## [1] 2 3 4
```
2. New assignment will overwrite the original values if you assign some values to an existing object. It is a **major** source of errors. One advise is to keep distinct object names

```r
x <- c(1, 2, 3)
length(x)
## [1] 3

x <- c(1, 2, 3, 4, 5)
length(x)
## [1] 5
```
Objects in R: three beginner tips

3. When using functions, we often bump into unexpected outputs, or error messages:

```r
y <- c(1, 2, 3, NA)
mean(y)
```

```r
## [1] NA
```

```
# It's essential to know how to seek help:
help(mean)
```

```
# starting httpd help server ... done
```

```
?mean
```

```
# Specify appropriate arguments for functions:
mean(y, na.rm = TRUE)
```

```
## [1] 2
```
Objects in R: atomic vectors

- What are vectors exactly?
Objects in R: atomic vectors

- What are vectors exactly?
 - (Atomic) vectors are the most basic units of data in R
Objects in R: atomic vectors

- What are vectors exactly?
 - (Atomic) vectors are the most basic units of data in R
 - Most common types of atomic vectors: `numeric` (integer, double), logical, character
Objects in R: atomic vectors

- Most common types of atomic vectors: numeric (integer, double), logical, character

```r
x <- c(1, 2, 3)
class(x)

## [1] "numeric"

y <- c(TRUE, FALSE, FALSE)
class(y)

## [1] "logical"

names <- c("Peter", "Paul", "Mary")
class(names)

## [1] "character"
```
Objects in R: atomic vectors

You can also coerce one type of vector into another:

```r
x <- c(1, 2, 3)
x <- as.character(x)

print(x)
```

```r
# [1] "1" "2" "3"
```

```r
class(x)
```

```r
# [1] "character"
```
To deal with massive data, we need efficient data structures to store and manipulate vectors: matrices and data frames.
Objects in R: matrix and data frame

To create a matrix:

```r
# Create a vector
numbers <- 1:12
print(numbers)

## [1]  1  2  3  4  5  6  7  8  9 10 11 12

# Store it as a matrix
matrix1 <- matrix(data = numbers, nrow = 3, byrow = TRUE)
print(matrix1)

## [1,]  1  2  3  4
## [2,]  5  6  7  8
## [3,]  9 10 11 12
```
Basic information

```r
class(matrix1)
```

[1] "matrix" "array"

```r
dim(matrix1) # dimensions
```

[1] 3 4
We can change the row/column names of matrices

rownames(matrix1)

NULL

rownames(matrix1) <- c("row1", "row2", "row3")
print(matrix1)

row1 1 2 3 4
row2 5 6 7 8
row3 9 10 11 12
Objects in R: matrix and data frame

Automate any repetitive process
col_names <- paste0("column", 1:4)
print(col_names)

[1] "column1" "column2" "column3" "column4"

colnames(matrix1) <- col_names
print(matrix1)

column1 column2 column3 column4
row1 1 2 3 4
row2 5 6 7 8
row3 9 10 11 12
Objects in R: matrix and data frame

```r
# To augment the matrix with new column
column5 <- c(13, 14, 15)
matrix1 <- cbind(matrix1, column5)
print(matrix1)
```

```r
table(matrix1)
```

```
## column1 column2 column3 column4 column5
## row1    1     2     3     4    13
## row2    5     6     7     8    14
## row3    9     10    11    12    15
```
Objects in R: matrix and data frame

To augment the matrix with new row
row4 <- c("a", "b", "c", "d", "e")
matrix1 <- rbind(matrix1, row4)
print(matrix1)

column1 column2 column3 column4 column5
row1 "1" "2" "3" "4" "13"
row2 "5" "6" "7" "8" "14"
row3 "9" "10" "11" "12" "15"
row4 "a" "b" "c" "d" "e"

Why do all vectors become characters?
Objects in R: matrix and data frame

- Matrices vs. data frames

Matrices can only contain one homogenous type of vectors.
Data frames can contain heterogeneous types of vectors, and thus are more flexible.
Objects in R: matrix and data frame

- Matrices vs. data frames
 - Matrices can only contain one **homogenous** type of vectors
Matrices vs. data frames

- Matrices can only contain one **homogenous** type of vectors.
- Data frames can contain **heterogeneous** types of vectors, and thus are more flexible.
Data frames can contain heterogeneous types of vectors, and thus are more flexible.

```r
df1 <- data.frame(
  names = c("Peter", "Paul", "Mary"),
  age = c(14, 15, 16),
  female = c(FALSE, FALSE, TRUE),
  stringsAsFactors = FALSE
)

print(df1)
```

```
##     names age female
## 1  Peter  14    FALSE
## 2  Paul  15    FALSE
## 3  Mary  16     TRUE
```
Objects in R: matrix and data frame

Basic information
class(df1)

[1] "data.frame"

dim(df1)

[1] 3 3

str(df1)

'data.frame': 3 obs. of 3 variables:
$ names : chr "Peter" "Paul" "Mary"
$ age : num 14 15 16
$ female: logi FALSE FALSE TRUE
Objects in R: subsetting data

- There are several ways to subset data: row/column indices, variable names, or evaluations

```r
# 1) Subsetting by row/column indices
# For the element in row 1, column 1
df1[1, 1]

## [1] "Peter"

## [1] "Peter" "Paul" "Mary"
```
2) Subsetting by variable names

df1$names

[1] "Peter" "Paul" "Mary"

df1$age

[1] 14 15 16

df1$female

[1] FALSE FALSE TRUE
3) Subsetting by evaluations

df1[df1$age >= 15,]

names age female
2 Paul 15 FALSE
3 Mary 16 TRUE

df1[df1$female == TRUE,]

names age female
3 Mary 16 TRUE

df1[df1$name %in% c("Peter", "Paul"),]

names age female
1 Peter 14 FALSE
2 Paul 15 FALSE
Objects in R: creating new variable in data frame

```r
print(df1)

## names  age  female
## 1 Peter 14  FALSE
## 2  Paul 15  FALSE
## 3  Mary 16   TRUE

df1$edu

## NULL

df1$edu <- c("hs", "col", "phd")

print(df1)

## names  age  female  edu
## 1 Peter 14  FALSE  hs
## 2  Paul 15  FALSE  col
## 3  Mary 16   TRUE  phd
```
Summary of data structures in R

<table>
<thead>
<tr>
<th></th>
<th>Homogeneous</th>
<th>Heterogeneous</th>
</tr>
</thead>
<tbody>
<tr>
<td>1d</td>
<td>Atomic vector</td>
<td>List</td>
</tr>
<tr>
<td>2d</td>
<td>Matrix</td>
<td>Data frame</td>
</tr>
<tr>
<td>nd</td>
<td>Array</td>
<td></td>
</tr>
</tbody>
</table>

- Another important data structure: `factor` for categorical data, which will be important for visualization purpose
Vector practices

- Create the following objects:

 1. vector1: \{a1, a2, a3, b1, b2, b3, c1, c2, c3 ... z1, z2, z3\}

 Hint: break down the question into two parts; check out function `rep(..., times = ..., each = ...)`

 2. vector2: The sequence from 1 to 49 by an increment of 2

 Hint: check out function `seq(...)`

 - Subset the 3rd, 16th, and 25th elements of the vector
 - Subset those elements whose values are either smaller than 10, or greater than 40
Vector practices

- Create the following objects:

1. vector1: \{a_1, a_2, a_3, b_1, b_2, b_3, c_1, c_2, c_3 \ldots z_1, z_2, z_3\}
Vector practices

Create the following objects:

1. vector1: \{a_1, a_2, a_3, b_1, b_2, b_3, c_1, c_2, c_3 \ldots z_1, z_2, z_3\}

 Hint: break downs the question into two parts; check out function `rep(..., times = ..., each = ...)`.
Vector practices

- Create the following objects:

1. vector1: \{a_1, a_2, a_3, b_1, b_2, b_3, c_1, c_2, c_3 \ldots z_1, z_2, z_3\}
 - Hint: break down the question into two parts; check out function `rep(..., times = ..., each = ...)`

2. vector2: The sequence from 1 to 49 by an increment of 2
Vector practices

Create the following objects:

1. vector1: \{a1, a2, a3, b1, b2, b3, c1, c2, c3 \ldots z1, z2, z3\}
 - Hint: break downs the question into two parts; check out function rep(..., times = ..., each = ...)

2. vector2: The sequence from 1 to 49 by an increment of 2
 - Hint: check out function seq(...)
Vector practices

1. Create the following objects:
 1. `vector1`: \{a1, a2, a3, b1, b2, b3, c1, c2, c3 ... z1, z2, z3\}
 - Hint: break down the question into two parts, check out function `rep(..., times = ..., each = ...)`
 2. `vector2`: The sequence from 1 to 49 by an increment of 2
 - Hint: check out function `seq(...)`
 - Subset the 3rd, 16th, and 25th elements of the vector

2. Subset those elements whose values are either smaller than 10, or greater than 40
Create the following objects:

1. vector1: \{a_1, a_2, a_3, b_1, b_2, b_3, c_1, c_2, c_3 \ldots z_1, z_2, z_3\}
 - Hint: break down the question into two parts; check out function \texttt{rep(..., times = ..., each = ...)}

2. vector2: The sequence from 1 to 49 by an increment of 2
 - Hint: check out function \texttt{seq(...)}
 - Subset the 3rd, 16th, and 25th elements of the vector
 - Subset those elements whose values are either smaller than 10, or greater than 40
Vector practices

Q1
chr <- rep(letters, each = 3)
print(chr)

[1] "a" "a" "a" "b" "b" "b" "c" "c" "c" "d" "d"
[12] "d" "e" "e" "e" "f" "f" "f" "g" "g" "g" "h"
[23] "h" "h" "i" "i" "i" "j" "j" "j" "k" "k" "k"
[34] "l" "l" "l" "m" "m" "m" "n" "n" "n" "o" "o"
[45] "o" "p" "p" "p" "q" "q" "q" "r" "r" "r" "s"
[56] "s" "s" "t" "t" "t" "u" "u" "u" "v" "v" "v"
[67] "w" "w" "w" "x" "x" "x" "y" "y" "y" "z" "z"
[78] "z"

num <- rep(1:3, times = length(letters))
print(num)

[1] 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2
[24] 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
[47] 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
[70] 1 2 3 1 2 3 1 2 3
Q1
vector1 <- paste0(chr, num)
print(vector1)

[1] "a1" "a2" "a3" "b1" "b2" "b3" "c1" "c2" "c3"
[10] "d1" "d2" "d3" "e1" "e2" "e3" "f1" "f2" "f3"
[19] "g1" "g2" "g3" "h1" "h2" "h3" "i1" "i2" "i3"
[28] "j1" "j2" "j3" "k1" "k2" "k3" "l1" "l2" "l3"
[37] "m1" "m2" "m3" "n1" "n2" "n3" "o1" "o2" "o3"
[46] "p1" "p2" "p3" "q1" "q2" "q3" "r1" "r2" "r3"
[55] "s1" "s2" "s3" "t1" "t2" "t3" "u1" "u2" "u3"
[64] "v1" "v2" "v3" "w1" "w2" "w3" "x1" "x2" "x3"
[73] "y1" "y2" "y3" "z1" "z2" "z3"
Vector practices

Q2

```r
to <- seq(from = 1, to = 49, by = 2)
print(vector2)
```

```r
## [1] 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
## [16] 31 33 35 37 39 41 43 45 47 49
```

```r
vector2[c(3, 16, 25)]
```

```r
## [1] 5 31 49
```

```r
vector2[vector2 < 10 | vector2 > 40]
```

```r
## [1] 1 3 5 7 9 41 43 45 47 49
```
3. matrix1: a 5 by 5 matrix containing values from vector2
3. matrix1: a 5 by 5 matrix containing values from vector2
 ▶ Assign the row names: row_a, row_b, row_c, row_d, row_e
Vector practices

3. matrix1: a 5 by 5 matrix containing values from vector2
 ▶ Assign the row names: row_a, row_b, row_c, row_d, row_e
 ▶ Assign the column names: col1, col2, col3, col4, col5
3. **matrix1**: a 5 by 5 matrix containing values from vector2
 - Assign the row names: `row_a`, `row_b`, `row_c`, `row_d`, `row_e`
 - Assign the column names: `col1`, `col2`, `col3`, `col4`, `col5`
 - Multiply the values in the first column of matrix 1 by 100; overwrite the original column
Vector practices

3. matrix1: a 5 by 5 matrix containing values from vector2
 ▶ Assign the row names: row_a, row_b, row_c, row_d, row_e
 ▶ Assign the column names: col1, col2, col3, col4, col5
 ▶ Multiply the values in the first column of matrix 1 by 100; overwrite the original column

4. df1: a dataframe with two variables:
Vector practices

3. matrix1: a 5 by 5 matrix containing values from vector2
 - Assign the row names: row_a, row_b, row_c, row_d, row_e
 - Assign the column names: col1, col2, col3, col4, col5
 - Multiply the values in the first column of matrix 1 by 100; overwrite the original column

4. df1: a dataframe with two variables:
 - country = {US, UK, CA, FR, IT}
3. matrix1: a 5 by 5 matrix containing values from vector2
 - Assign the row names: row_a, row_b, row_c, row_d, row_e
 - Assign the column names: col1, col2, col3, col4, col5
 - Multiply the values in the first column of matrix 1 by 100; overwrite the original column

4. df1: a dataframe with two variables:
 - country = \{US, UK, CA, FR, IT\}
 - pop = \{327, 66, 37, 67, 60\}
Vector practices

3. matrix1: a 5 by 5 matrix containing values from vector2
 - Assign the row names: row_a, row_b, row_c, row_d, row_e
 - Assign the column names: col1, col2, col3, col4, col5
 - Multiply the values in the first column of matrix 1 by 100; overwrite the original column

4. df1: a dataframe with two variables:
 - country = {US, UK, CA, FR, IT}
 - pop = {327, 66, 37, 67, 60}
 - Subset top-three observations in term of the level of population
3. **matrix1**: a 5 by 5 matrix containing values from `vector2`
 - Assign the row names: `row_a`, `row_b`, `row_c`, `row_d`, `row_e`
 - Assign the column names: `col1`, `col2`, `col3`, `col4`, `col5`
 - Multiply the values in the first column of matrix 1 by 100; overwrite the original column

4. **df1**: a dataframe with two variables:
 - `country = {US, UK, CA, FR, IT}`
 - `pop = {327, 66, 37, 67, 60}`
 - Subset top-three observations in term of the level of population
 - Hint: check out function `order(...)"
Vector practices

Q3
matrix1 <- matrix(data = vector2, nrow = 5, ncol = 5)
rownames(matrix1) <- paste("row", letters[1:5], sep = "_")
colnames(matrix1) <- paste0("col", 1:5)
matrix1[, 1] <- matrix1[, 1] * 100
print(matrix1)

##
col1 col2 col3 col4 col5
row_a 100 11 21 31 41
row_b 300 13 23 33 43
row_c 500 15 25 35 45
row_d 700 17 27 37 47
row_e 900 19 29 39 49
Vector practices

Q4
```r
df1 <- data.frame(country = c("US", "UK", "CA", "FR", "IT"),
                   pop = c(327, 66, 37, 67, 60))
print(df1)
```

```r
## country pop
## 1 US 327
## 2 UK 66
## 3 CA 37
## 4 FR 67
## 5 IT 60
```

```r
order(df1$pop, decreasing = TRUE)
```

```r
## [1] 1 4 2 5 3
```

```r
top3 <- order(df1$pop, decreasing = TRUE)[1:3]
df1[top3, ]
```

```r
## country pop
## 1 US 327
## 4 FR 67
## 2 UK 66
```
Workflow in R

- Usual workflow for data analysis (Grolemund and Wickham 2016):
Tidyverse and tidy data

- Tidyverse is a collection of packages designed for data science with unified grammar and data structures.
Tidyverse and tidy data

- Tidyverse is a collection of packages designed for data science with unified grammar and data structures
- *Tidy data:*
 - Each variable must have its own column
 - Each observation must have its own row
 - Each value must have its own cell
Tidyverse and tidy data

- Tidyverse is a collection of packages designed for data science with unified grammar and data structures

- *Tidy data:*
 - Each **variable** must have its own **column**
Tidyverse and tidy data

- Tidyverse is a collection of packages designed for data science with unified grammar and data structures

- *Tidy data:*
 - Each **variable** must have its own **column**
 - Each **observation** must have its own **row**
Tidyverse and tidy data

- Tidyverse is a collection of packages designed for data science with unified grammar and data structures

- **Tidy data:**
 - Each **variable** must have its own **column**
 - Each **observation** must have its own **row**
 - Each value must have its own cell
Tidyverse and tidy data

- To install Tidyverse package, run:

```
install.packages("tidyverse")
```

- To load a package, run (usually at the top of your R document):

```
library(tidyverse)
```
Importing data in R

```r
# Load package
library(tidyverse)

# Load econ.csv
econ <- read_csv("https://students.washington.edu/rllobet/vis/lab1/data/econ.csv")

## Rows: 557 Columns: 4

## -- Column specification -------------------------------------
## Delimiter: ","
## chr (1): country
## dbl (3): GWn, year, gdpPerCap

# tibble (tbl) is a special class of data frame
class(econ)

## [1] "spec_tbl_df" "tbl_df" "tbl"
```
Importing data in R

```r
# Get a sense of the dataset
glimpse(econ)
```

```r
## Rows: 557
## Columns: 4
## $ country  <chr>  "Afghanistan",  "Afghanistan",  ~
## $ GWn       <dbl>  700,  700,  700,  339,  615,  615,  ~
## $ gdpPercap <dbl>  862.5477,  818.9504,  600.5932,  ~
```

```r
head(econ)
```

```r
## # A tibble: 6 x 4
## country    GWn year gdpPercap
## <chr>   <dbl> <dbl>  <dbl>
## 1 Afghanistan  700 1983   863.
## 2 Afghanistan  700 1985   819.
## 3 Afghanistan  700 1991   601.
## 4 Albania      339 2000  2962.
## 5 Algeria       615 1967  1824.
## 6 Algeria       615 1968  1977.
```
Basic data wrangling

- Below are just scratching the surface; check out...
Basic data wrangling

- Below are just scratching the surface; check out
 - Introductory course to tidyverse at DataCamp
Basic data wrangling

- Below are just scratching the surface; check out
 - Introductory course to tidyverse at DataCamp
 - Cheat sheet for data wrangling
Basic data wrangling

- Below are just scratching the surface; check out
 - Introductory course to tidyverse at DataCamp
 - Cheat sheet for data wrangling
 - *R for Data Science*
Basic data wrangling: `count()`

Count number of rows in each group:

```r
econ %>%
  count(country)
```

A tibble: 146 x 2
##
country n
<chr> <int>
1 Afghanistan 3
2 Albania 1
3 Algeria 5
4 Angola 3
5 Argentina 5
6 Australia 3
7 Austria 9
8 Bahrain 2
9 Bangladesh 5
10 Belarus (Byelorussia) 1
... with 136 more rows
Basic data wrangling: %>%

▶ What is %>% (“pipe”)?
▶ x %>% fun(y) is equivalent to fun(x, y)
▶ Its advantage will be apparent when you perform numerous steps of manipulation

```r
count(econ, country) # Equivalent to econ %>% count(country)
```

```
## # A tibble: 146 x 2
##    country       n
##  <chr>    <int>
##1  Afghanistan     3
##2    Albania       1
##3    Algeria       5
##4   Angola        3
##5  Argentina      5
##6   Australia     3
##7    Austria      9
##8   Bahrain       2
##9  Bangladesh     5
##10  Belarus (Byelorussia) 1
## # ... with 136 more rows
```
Basic data wrangling: `arrange()`

Order rows by values of column(s) from low to high:

```r
econ %>%
  count(country) %>%
  arrange(n)  # Rather than: arrange(count(econ, country), n)
```

```r
## # A tibble: 146 x 2
##    country                        n
##     <chr>             <int>
##  1  Albania           1
##  2  Belarus (Byelorussia) 1
##  3     Cambodia (Kampuchea) 1
##  4 Central African Republic 1
##  5      Chile           1
##  6      China           1
##  7     Dominican Republic 1
##  8      Estonia          1
##  9       Gabon           1
## 10     Ghana            1
## # ... with 136 more rows
```
Basic data wrangling: `arrange()`

Order rows by values of column(s) from high to low:

```r
econ %>%
  count(country) %>%
  arrange(desc(n))
```

A tibble: 146 x 2
country n
<chr> <int>
United States of America 112
Mexico 10
Austria 9
Uruguay 9
Philippines 8
Denmark 7
Norway 7
Portugal 7
Trinidad and Tobago 7
Venezuela 7
... with 136 more rows
Basic data wrangling: \texttt{filter()}

Extract rows that meet logical criteria:

\begin{verbatim}
 econ %>%
 filter(country == "Brazil")
\end{verbatim}

\begin{verbatim}
A tibble: 3 x 4
country GWN year gdpPerCap
##<chr> <dbl> <dbl> <dbl>
1 Brazil 140 1954 1848.
2 Brazil 140 1989 5224.
3 Brazil 140 2002 5481.
\end{verbatim}
Basic data wrangling: `filter()`

Extract rows that meet multiple logical criteria:

```r
econ %>%
  filter(
    country == "Brazil" | country == "Russia (Soviet Union)" |
    country == "India" | country == "China"
  )
```

A tibble: 9 x 4
country GWn year gdpPercap
1 Brazil 140 1954 1848.
2 Brazil 140 1989 5224.
3 Brazil 140 2002 5481.
4 China 710 1996 2892.
5 India 750 1943 698.
6 India 750 1961 758.
7 India 750 1992 1350.
8 Russia (Soviet Union) 365 1982 6536.
9 Russia (Soviet Union) 365 2005 7269.
Basic data wrangling: filter()

Alternatively:

```r
econ %>%
  filter(country %in% c("Brazil", "Russia (Soviet Union)", "India", "China"))
```

```r
## # A tibble: 9 x 4
## #  country    GWn  year  gdpPerCap
## <chr>  <dbl> <dbl>    <dbl>
## 1 Brazil    140 1954    1848.
## 2 Brazil    140 1989    5224.
## 3 Brazil    140 2002    5481.
## 4 China     710 1996    2892.
## 5 India     750 1943    698.
## 6 India     750 1961    758.
## 7 India     750 1992    1350.
## 8 Russia (Soviet Union) 365 1982    6536.
## 9 Russia (Soviet Union) 365 2005    7269.
```
Basic data wrangling: `select()`

Extract columns (variables):

```r
econ %>%
  select(country, year, gdpPercap)
```

```
## # A tibble: 557 x 3
## #  country     year gdpPercap
## # <chr>  <dbl>    <dbl>
## 1 Afghanistan 1983  863.
## 2 Afghanistan 1985  819.
## 3 Afghanistan 1991  601.
## 4 Albania     2000  2962.
## 5 Algeria     1967  1824.
## 6 Algeria     1968  1977.
## 7 Algeria     1977  2759.
## 8 Algeria     1986  3301.
## 9 Algeria     2006  3386.
## 10 Angola     1953  1126.
## # ... with 547 more rows
```
Basic data wrangling: `filter()` & `select()`

Filter USA observations from 2000 to 2010 with `year` and `gdpPercap` as the only variables:

```
USAdata <- econ %>%
  filter(country == "United States of America",
          year %in% 2000:2010) %>%
  select(year, gdpPercap)
print(USAdata)
```

```
## # A tibble: 11 x 2
##   year  gdpPercap
##   <dbl>    <dbl>
## 1 2000  28702.
## 2 2001  28726.
## 3 2002  28977.
## 4 2003  29459.
## 5 2004  30200.
## 6 2005  30842.
## 7 2006  31358.
## 8 2007  31655.
## 9 2008  31251.
##10 2009  29899.
##11 2010  30491.
```
Basic data wrangling: `summarize()`

Compute table of summaries:

```r
USAdataset %>%
  summarize(avg_gdpPercap = mean(gdpPercap))
```

```r
## # A tibble: 1 x 1
## avg_gdpPercap
## <dbl>
## 1 30142.
```

What if we want to calculate the average GDP per capita for all countries in our data set?
Basic data wrangling: `group_by()` & `summarize()`

- Create a grouped version of the table with `group_by()`
- Subsequent functions will manipulate each group *separately*

```r
econ %>%
  group_by(country) %>%
  summarize(avg_gdpPercap = mean(gdpPercap)) %>%
  arrange(desc(avg_gdpPercap))
```

```r
## # A tibble: 146 x 2
##   country avg_gdpPercap
##    <chr>       <dbl>
## 1 Qatar       39157.
## 2 Kuwait      16288.
## 3 German Federal Republic 15739.
## 4 Norway      14846.
## 5 Ireland     14353.
## 6 Belarus (Byelorussia) 13659.
## 7 United States of America 13623.
## 8 United Arab Emirates 12812.
## 9 Belgium     12053.
## 10 Austria    11794.
## # ... with 136 more rows
```
Basic data wrangling: more summarize()

What if we want to know the numbers of distinct countries and years in the data set?

```r
econ %>%
  summarize_at(c("country", "year"), n_distinct)
```

```
# A tibble: 1 x 2
##  country  year
##     <int> <int>
## 1     146   111
```
Basic data wrangling: `mutate()`

Compute new columns (variables):

```r
econ %>%
  mutate(
    id = row_number(),
    decade = year %/% 10 * 10
  ) %>%
  select(id, country, G WN, year, decade, gdpPercap)
```

```r
# A tibble: 557 x 6
##  id country   GWN year decade gdpPercap
##  <int> <chr>  <dbl> <dbl> <dbl>     <dbl>
## 1     1 Afghanistan 700 1983 1980  863.  
## 2     2 Afghanistan 700 1985 1980  819.  
## 5     5 Algeria     615 1967 1960 1824.  
## 7     7 Algeria     615 1977 1970 2759.  
## 8     8 Algeria     615 1986 1980 3301.  
## 9     9 Algeria     615 2006 2000 3386.  
## 10    10 Angola     540 1953 1950 1126.  
# ... with 547 more rows
```
Basic data wrangling: `group_by()` & `summarize()`

What if we want to know countries’ average GDP per capita over decades?

```r
econ %>%
  mutate(decade = year %% 10 * 10) %>%
  group_by(country, decade) %>%
  summarize(decAvg_gdp = mean(gdpPercap))
```

```
## 'summarise()' has grouped output by 'country'. You can override using the '.groups' argument.
## # A tibble: 382 x 3
## # Groups: country [146]
##   country decade decAvg_gdp
##   <chr>   <dbl>     <dbl>
## 1 Afghanistan 1980     841.
## 2 Afghanistan 1990     601.
## 3 Albania 2000     2962.
## 4 Algeria 1960     1901.
## 5 Algeria 1970     2759.
## 6 Algeria 1980     3301.
## 7 Algeria 2000     3386.
## 8 Angola 1950     1161.
## 9 Angola 2000      825.
##10 Argentina 1900     2992.
## # ... with 372 more rows
```
Saving wrangled data

When you save the wrangled data, don’t overwrite the original data with the same file name:

```python
write_csv(econ, "econ_wrangled.csv")
```
Intermediate data wrangling: second data set

```r
pop <- read_csv("https://students.washington.edu/rllobet/vis/lab1/data/pop.csv")
head(pop)
```

```r
## # A tibble: 6 x 5
## #  country        GWn  year     pop  region
## #  <chr>    <dbl> <dbl>    <dbl> <chr>
## 1 Afghanistan 700 1983 15177000 Asia: Southern Asia
## 2 Afghanistan 700 1985 14519000 Asia: Southern Asia
## 3 Afghanistan 700 1991 15403000 Asia: Southern Asia
## 4 Albania     339 2000  3113000  Europe: Southern Europe
## 5 Algeria     615 1967 13078000 Africa: Northern Africa
## 6 Algeria     615 1968 13495000 Africa: Northern Africa
```

```r
# Compare with econ
head(econ)
```

```r
## # A tibble: 6 x 4
## #  country           GWn  year  gdpPercap
## #  <chr>     <dbl> <dbl>     <dbl>
## 1 Afghanistan 700 1983      863.
## 2 Afghanistan 700 1985      819.
## 3 Afghanistan 700 1991      601.
## 4 Albania     339 2000      2962.
## 5 Algeria     615 1967      1824.
## 6 Algeria     615 1968      1977.
```
Intermediate data wrangling: join family

How do we combine two data sets such that:

```r
## # A tibble: 559 x 6
## #  country     GWN  year gdpPercap   pop region
## # <chr>    <dbl> <dbl>      <dbl>     <dbl> <chr>
## 1 Afghanistan 700 1983    863. 15177000 Asia: Southern Asia
## 2 Afghanistan 700 1985    819. 14519000 Asia: Southern Asia
## 3 Afghanistan 700 1991    601. 15403000 Asia: Southern Asia
## 4 Albania 339 2000    2962. 3113000 Europe: Southern Europe
## 5 Algeria  615 1967   1824. 13078000 Africa: Northern Africa
## 6 Algeria  615 1968   1977. 13495000 Africa: Northern Africa
## 7 Algeria  615 1977   2759. 17058000 Africa: Northern Africa
## 8 Algeria  615 1986   3301. 22520000 Africa: Northern Africa
## 9 Algeria  615 2006   3386. 33749328 Africa: Northern Africa
## 10 Angola   540 1953  1126. NA NA: NA
## # ... with 549 more rows
```
Intermediate data wrangling: join family

Family of join functions: `inner_join`, `left_join`, `right_join`, `full_join`...

data <- econ %>%
 left_join(pop, by = c("GWnd", "year")) %>%
 select(-country.y) %>%
 rename(country = country.x)

A tibble: 559 x 6
A tibble: 559 x 6
country GWnd year gdpPercap pop region
<chr> <dbl> <dbl> <dbl> <dbl> <chr>
1 Afghanistan 700 1983 863. 15177000 Asia: Southern Asia
2 Afghanistan 700 1985 819. 14519000 Asia: Southern Asia
3 Afghanistan 700 1991 601. 15403000 Asia: Southern Asia
4 Albania 339 2000 2962. 3113000 Europe: Southern Europe
5 Algeria 615 1967 1824. 13078000 Africa: Northern Africa
6 Algeria 615 1968 1977. 13495000 Africa: Northern Africa
7 Algeria 615 1977 2759. 17058000 Africa: Northern Africa
8 Algeria 615 1986 3301. 22520000 Africa: Northern Africa
9 Algeria 615 2006 3386. 33749328 Africa: Northern Africa
10 Angola 540 1953 1126. NA NA: NA
... with 549 more rows
Intermediate data wrangling: separate (or Regex)

How to separate the region column into continent and sub_region?

```r
## # A tibble: 559 x 7
## country GWn year gdpPercap pop continent sub_region
## <chr> <dbl> <dbl> <dbl> <dbl> <chr> <chr>
## 1 Afghanistan 700 1983 863. 15177000 Asia Southern Asia
## 2 Afghanistan 700 1985 819. 14519000 Asia Southern Asia
## 3 Afghanistan 700 1991 601. 15403000 Asia Southern Asia
## 4 Albania 339 2000 2962. 3113000 Europe Southern Europe
## 5 Algeria 615 1967 1824. 13078000 Africa Northern Africa
## 6 Algeria 615 1968 1977. 13495000 Africa Northern Africa
## 7 Algeria 615 1977 2759. 17058000 Africa Northern Africa
## 8 Algeria 615 1986 3301. 22520000 Africa Northern Africa
## 9 Algeria 615 2006 3386. 33749328 Africa Northern Africa
## 10 Angola 540 1953 1126. NA NA NA
## # ... with 549 more rows
```
Intermediate data wrangling: separate (or Regex)

How to separate the region column into continent and sub_region?

```r
data %>%
  separate(region, into = c("continent", "sub_region"), sep = ": ")
```

```r
# A tibble: 559 x 7
# country  GWn  year  gdpPercap  pop continent      sub_region
# <chr>    <dbl> <dbl>   <dbl>  <dbl> <chr>          <chr>
# 1 Afghanistan  700  1983  863. 15177000 Asia Southern Asia
# 2 Afghanistan  700  1985  819. 14519000 Asia Southern Asia
# 3 Afghanistan  700  1991  601. 15403000 Asia Southern Asia
# 4 Albania       339  2000 2962. 3113000 Europe Southern Europe
# 5 Algeria       615  1967 1824. 13078000 Africa Northern Africa
# 6 Algeria       615  1968 1977. 13495000 Africa Northern Africa
# 7 Algeria       615  1977 2759. 17058000 Africa Northern Africa
# 8 Algeria       615  1986 3301. 22520000 Africa Northern Africa
# 9 Angola        540  1953 1126.   NA     NA            NA
# ... with 549 more rows
```
Intermediate data wrangling: separate (or Regex)

How to separate the region column into continent and sub_region?

```r
# Or using regular expression
data %>%
  mutate(continent = str_extract(region, ".*(?=: )"),
         sub_region = str_extract(region, "(?<=: ).*")) %>%
  select(-region)
```

```r
## # A tibble: 559 x 7
## #  country       GWn year gdpPercap pop continent sub_region
## #  <chr> <dbl> <dbl> <dbl> <dbl> <chr>   <chr>
##  1 Afghanistan 700 1983 863. 15177000 Asia Southern Asia
##  2 Afghanistan 700 1985 819. 14519000 Asia Southern Asia
##  3 Afghanistan 700 1991 601. 15403000 Asia Southern Asia
##  4 Albania 339 2000 2962. 3113000 Europe Southern Europe
##  5 Algeria 615 1967 1824. 13078000 Africa Northern Africa
##  6 Algeria 615 1968 1977. 13495000 Africa Northern Africa
##  7 Algeria 615 1977 2759. 17058000 Africa Northern Africa
##  8 Algeria 615 1986 3301. 32520000 Africa Northern Africa
##  9 Algeria 615 2006 3386. 33749328 Africa Northern Africa
## 10 Angola 540 1953 1126. NA NA NA
## # ... with 549 more rows
```
Intermediate data wrangling: case_when

▶ How to convert pop into a new categorical variable, called popCat:
Intermediate data wrangling: case_when

- How to convert pop into a new categorical variable, called popCat:
 - Countries with pop value lower than the first quartile of all pop is classified as “low”
Intermediate data wrangling: *case_when*

- How to convert `pop` into a new categorical variable, called `popCat`:
 - Countries with `pop` value lower than the first quartile of all `pop` is classified as “low”
 - Countries with `pop` value equal to or higher than the first quartile, but lower than the third quartile is classified as “middle”
Intermediate data wrangling: case_when

- How to convert pop into a new categorical variable, called popCat:
 - Countries with pop value lower than the first quartile of all pop is classified as “low”
 - Countries with pop value equal to or higher than the first quartile, but lower than the third quartile is classified as “middle”
 - Countries with pop value equal to or higher than the third quartile is classified as “high”
Intermediate data wrangling: case_when

```r
Qts <- quantile(data$pop, prob = c(0.25, 0.75), na.rm = TRUE)
print(Qts)
```

```r
## 25% 75%
## 3805000 81896000
```

```r
Q1 <- Qts[1]
Q3 <- Qts[2]
data <- data %>%
  mutate(popCat = case_when(pop < Q1 ~ "low",
                            pop >= Q1 & pop < Q3 ~ "middle",
                            pop > Q3 ~ "high"))
```

```r
## # A tibble: 559 x 8
## #  country    GWn  year gdpPercap  pop  continent sub_region popCat
## # <chr> <dbl> <dbl> <dbl> <dbl> <chr> <chr> <chr>
## 1 Afghanistan 700 1983 863. 15177000 Asia Southern Asia middle
## 2 Afghanistan 700 1985 819. 14519000 Asia Southern Asia middle
## 3 Afghanistan 700 1991 601. 15403000 Asia Southern Asia middle
## 4 Albania 339 2000 2962. 3113000 Europe Southern Europe low
## 5 Algeria 615 1967 1824. 13078000 Africa Northern Africa middle
## 6 Algeria 615 1968 1977. 13495000 Africa Northern Africa middle
## 7 Algeria 615 1977 2759. 17058000 Africa Northern Africa middle
## 8 Algeria 615 1986 3301. 22520000 Africa Northern Africa middle
## 9 Algeria 615 2006 3386. 33749328 Africa Northern Africa middle
## 10 Angola 540 1953 1126. NA NA NA NA
## # ... with 549 more rows
```
Focus on USA data again. How to create a variable, named `growth`, that computes the percentage change in `gdpPercap` compared to the immediate last year?

```r
## # A tibble: 114 x 4
##   country                      year gdpPercap growth
##   <chr>        <dbl>      <dbl>    <dbl>
## 1 United States of America 1900  4091.    NA
## 2 United States of America 1901  4464.  0.0912
## 3 United States of America 1902  4421. -0.0097
## 4 United States of America 1903  4551.  0.0295
## 5 United States of America 1904  4410. -0.0311
## 6 United States of America 1905  4642.  0.0528
## 7 United States of America 1906  5079.  0.0941
## 8 United States of America 1907  5065. -0.0028
## 9 United States of America 1908  4561. -0.0996
##10 United States of America 1909  5017.  0.100
### ... with 104 more rows
```
Intermediate data wrangling: mutate and lag

Extract USA data
USADATA <- data %>%
 filter(country == "United States of America") %>%
 select(country, year, gdpPercap)

Use `lag` to create a column of gdpPercap in past year
USADATA <- USADATA %>%
 mutate(gdpPercap_lag1 = lag(gdpPercap, n = 1))

print(USADATA)

A tibble: 114 x 4
country year gdpPercap gdpPercap_lag1
<chr> <dbl> <dbl> <dbl>
1 United States of America 1900 4091. NA
2 United States of America 1901 4464. 4091.
3 United States of America 1902 4421. 4464.
4 United States of America 1903 4551. 4421.
5 United States of America 1904 4561. 4551.
6 United States of America 1905 5017. 4561.
7 United States of America 1906 5017. 5017.
8 United States of America 1907 5017. 5017.
9 United States of America 1908 5017. 5017.
10 United States of America 1909 5017. 5017.
... with 104 more rows
Intermediate data wrangling: mutate and lag

USAdata <- USAdata %>%
 mutate(growth = (gdpPercap - gdpPercap_lag1) / gdpPercap_lag1)

print(USAdata)

A tibble: 114 x 5
country year gdpPercap gdpPercap_lag1 growth
<chr> <dbl> <dbl> <dbl> <dbl>
1 United States of America 1900 4091. NA NA
2 United States of America 1901 4464. 4091. 0.0912
3 United States of America 1902 4421. 4464. -0.00969
4 United States of America 1903 4551. 4421. 0.0295
5 United States of America 1904 4642. 4551. 0.0528
6 United States of America 1905 5079. 4642. 0.0941
7 United States of America 1906 5017. 5079. -0.00280
8 United States of America 1907 5065. 5017. -0.0996
9 United States of America 1908 4561. 5065. -0.00010
10 United States of America 1909 4561. 4561. 0.100
... with 104 more rows
References

