CSSS 569 Visualizing Data and Models
Lab 4: Advanced ggplot2

Ramses Llobet

Department of Political Science, UW

January 28, 2022
Introduction

- Recap of what we’ve covered last week
- Making a scatterplot from scratch in ggplot2 (from Chris’s slides)
 1. Decide on dimensions: aspect ratio, axis limits
 2. Add axis labels, plot titles
 3. Choose data markers: points, symbols, text
 4. Scaling & transformation, add ticks if needed
 5. Choose a color palette
 6. Add annotations: labels, arrows, notes
 7. Add best-fit line(s) & confidence intervals
 8. Add extra plots (e.g., rugs) to make a confection
 9. Repeat as small multiples (facet_grid and facet_wrap)
- Next week we’ll implement them using tile

- Unpack the inner working of ggplot2
 - data, aes(...), geom(..., inherit.aes = TRUE)
- Customized theme: theme_caviz.R
- Exercise to reproduce a graph
Roadmap for today

Today’s lab is structured around three exercises:

- Ideological self-placement (from very liberal to very conservative)
- Predicted probability of voting (White and Non-white)
Today's lab is structured around three exercises:

- Model 1 and Model 2 comparisons for win pct, innings, strikeout, and era.
Today’s lab is structured around three exercises:

Incidence of Measles in the US

Cases per 100,000 people

>1000
500−1000
100−500
10−100
1−10
0−1
0
NA

Alabama
Alaska
Arizona
Arkansas
California
Colorado
Connecticut
Delaware
District Of Columbia
Florida
Georgia
Hawaii
Idaho
Illinois
Indiana
Iowa
Kansas
Kentucky
Louisiana
Maine
Maryland
Massachusetts
Michigan
Minnesota
Mississippi
Missouri
Montana
Nebraska
Nevada
New Hampshire
New Jersey
New Mexico
New York
North Carolina
North Dakota
Ohio
Oregon
Pennsylvania
Rhode Island
South Carolina
South Dakota
Tennessee
Texas
Utah
Vermont
Virginia
Washington
West Virginia
Wisconsin
Wyoming
Roadmap for today

1. Last exercise: 1992 Presidential Election
Roadmap for today

1. Last exercise: 1992 Presidential Election
 ▶ Use of scale_{...}

2. Ropeladder exercise: Cy Young award
 ▶ pivot_longer
 ▶ pivot_wider
 ▶ Sorting using fct_reorder
 ▶ Use of scale_{...}

3. Heatmap exercise: Measles in US
 ▶ geom_tile
 ▶ Various ways to scale_color/fill_{...}

4. Highlight ggplot2 extension packages (See more here)
Roadmap for today

1. Last exercise: 1992 Presidential Election
 - Use of `scale_`{...}
 - Use of `facet_grid` and facet-specific labels
Roadmap for today

1. Last exercise: 1992 Presidential Election
 ▶ Use of `scale_{...}`
 ▶ Use of `facet_grid` and facet-specific labels
2. Ropeladder exercise: Cy Young award
Roadmap for today

1. Last exercise: 1992 Presidential Election
 ▶ Use of `scale_{...}`
 ▶ Use of `facet_grid` and facet-specific labels

2. Ropeladder exercise: Cy Young award
 ▶ `pivot_longer` and `pivot_wider`
Roadmap for today

1. Last exercise: 1992 Presidential Election
 ▶ Use of `scale_{...}`
 ▶ Use of `facet_grid` and facet-specific labels

2. Ropeladder exercise: Cy Young award
 ▶ `pivot_longer` and `pivot_wider`
 ▶ Sorting using `fct_reorder`
Roadmap for today

1. Last exercise: 1992 Presidential Election
 - Use of `scale_{...}`
 - Use of `facet_grid` and facet-specific labels

2. Ropeladder exercise: Cy Young award
 - `pivot_longer` and `pivot_wider`
 - Sorting using `fct_reorder`
 - Use of `scale_{...}`
Roadmap for today

1. Last exercise: 1992 Presidential Election
 - Use of `scale_{...}
 - Use of `facet_grid` and facet-specific labels

2. Ropeladder exercise: Cy Young award
 - `pivot_longer` and `pivot_wider`
 - Sorting using `fct_reorder`
 - Use of `scale_{...}

3. Heatmap exercise: Measles in US
Roadmap for today

1. Last exercise: 1992 Presidential Election
 - Use of `scale_{...}`
 - Use of `facet_grid` and facet-specific labels

2. Ropeladder exercise: Cy Young award
 - `pivot_longer` and `pivot_wider`
 - Sorting using `fct_reorder`
 - Use of `scale_{...}`

3. Heatmap exercise: Measles in US
 - Use of `geom_tile` and various ways to `scale_color/fill_{...}`
Roadmap for today

1. Last exercise: 1992 Presidential Election
 ▶ Use of `scale_{...}`
 ▶ Use of `facet_grid` and facet-specific labels

2. Ropeladder exercise: Cy Young award
 ▶ `pivot_longer` and `pivot_wider`
 ▶ Sorting using `fct_reorder`
 ▶ Use of `scale_{...}`

3. Heatmap exercise: Measles in US
 ▶ Use of `geom_tile` and various ways to `scale_color/fill_{...}`

4. Highlight ggplot2 extension packages (See more here)
Last exercise: 1992 Presidential Election

Predicted probability of voting
White
Non-white

Ideological self-placement
(from very liberal to very conservative)
Last exercise: motivation

- There are many ways to do small multiples:
Last exercise: motivation

▶ There are many ways to do small multiples:
 ▶ `plot + facet_grid(nonwhite ~ vote92)`

![Graph showing predicted probability of voting for Clinton, Perot, and Bush for non-white and white voters. The x-axis represents ideological self-placement, ranging from very liberal to very conservative. The y-axis represents the predicted probability of voting.]
Last exercise: motivation

- Thoughtful juxtaposition facilitates meaningful comparison and provokes further inquiry
Last exercise: motivation

- Thoughtful juxtaposition facilitates meaningful comparison and provokes further inquiry
- Sometimes, data overlapping might be an interesting phenomenon

![Graphs showing ideological self-placement and predicted probability of voting for Clinton, Perot, and Bush, with separate lines for White and Non-white voters.](image)
Last exercise: 1992 Presidential Election

Prerequisite

Load package
library(tidyverse)
library(RColorBrewer)

Load data
presVoteEV <- read_csv("data/presVoteEV.csv")

Load theme
source("source/theme_caviz.R")

Get nice color
brewer <- brewer.pal(9, "Set1")
blue <- brewer[2]
orange <- brewer[5]
Factorize variables

```r
presVoteEV <- presVoteEV %>%
  mutate(
    nonwhite = factor(nonwhite),
    vote92 = factor(vote92, levels = c("Clinton", "Perot", "Bush"))
  )
```
Last exercise: 1992 Presidential Election

```r
p <-
ggplot(presVoteEV, aes(x = rlibcon,
    y = pe, ymin = lower, ymax = upper,
    color = nonwhite, fill = nonwhite)) +
facet_grid(~ vote92) +
geom_line() +
theme_caviz_hgrid

print(p)
```

![Graph showing presidential election results](image-url)
Last exercise: 1992 Presidential Election

```r
p <- p +
    scale_color_manual(values = c(blue, orange), 
                       labels = c("White", "Non-white"))

print(p)
```
Last exercise: 1992 Presidential Election

```r
p +
  geom_ribbon(alpha = 0.5, show.legend = FALSE) +
  scale_fill_manual(values = c(blue, orange))
```
Last exercise: 1992 Presidential Election

```r
p +
  geom_ribbon(alpha = 0.5, linetype = 0, show.legend = FALSE) +
  scale_fill_manual(values = c(blue, orange))
```
Last exercise: 1992 Presidential Election

```r
p <- p +
  geom_ribbon(alpha = 0.5, linetype = 0, show.legend = FALSE) +
  scale_fill_manual(values = c(blue, "transparent")) # NA used to work

print(p)
```
Last exercise: 1992 Presidential Election

```
p +
  geom_line(aes(y = upper)) +
  geom_line(aes(y = lower))
```
Last exercise: 1992 Presidential Election

\[
p \leftarrow p +
\]
\[
\text{geom_line(aes(y = upper, linetype = nonwhite), show.legend = FALSE)} +
\]
\[
\text{geom_line(aes(y = lower, linetype = nonwhite), show.legend = FALSE)} +
\]
\[
\text{scale_linetype_manual(values = c(0, 2)) \# 0 = blank; 2 = dashed}
\]
\[
\text{print(p)}
\]
Last exercise: 1992 Presidential Election

\begin{verbatim}
p <- p +
 scale_x_continuous(breaks = 1:7) +
 scale_y_continuous(breaks = seq(0, 1, 0.2),
 limits = c(0, 1),
 expand = c(0, 0))

print(p)
\end{verbatim}

![Graph showing voting preferences for Clinton, Perot, and Bush in the 1992 Presidential Election.]](image-url)
Last exercise: 1992 Presidential Election

```r
p <- p +
  theme(legend.position = c(0.06, 0.13),
        legend.key.size = unit(0.2, "cm")) +
  labs(y = "Predicted prob. of voting",
       x = "Ideological self-placement")

print(p)
```

![Graphs showing predicted probability of voting for Clinton, Perot, and Bush by ideological self-placement for white and non-white voters.](image-url)
Last exercise: 1992 Presidential Election

Full code to reproduce the graph

```r
p <- ggplot(presVoteEV, aes(x = rlibcon, y = pe, 
    color = nonwhite, fill = nonwhite)) + 
  # Small multiples by candidates 
  facet_grid(~ vote92) + 
  # Point estimates lines 
  geom_line() + 
  scale_color_manual(values = c(blue, orange), 
    labels = c("White", "Non-white")) + 
  # CIs for white voters 
  geom_ribbon(aes(ymin = lower, ymax = upper), 
    alpha = 0.5, linetype = 0, show.legend = FALSE) + 
  scale_fill_manual(values = c(blue, "transparent")) + 
  # CIs for non-white voters 
  geom_line(aes(y = upper, linetype = nonwhite), show.legend = FALSE) + 
  geom_line(aes(y = lower, linetype = nonwhite), show.legend = FALSE) + 
  scale_linetype_manual(values = c(0, 2)) + 
  # Other adjustments 
  scale_x_continuous(breaks = 1:7) + 
  scale_y_continuous(breaks = seq(0, 1, 0.2), limits = c(0, 1), 
    expand = c(0, 0)) + 
  theme_caviz_hgrid + 
  theme(legend.position = c(0.06, 0.13), legend.key.size = unit(0.2, "cm")) + 
  labs(y = "Predicted prob. of voting", x = "Ideological self-placement")
```
Last exercise: 1992 Presidential Election

Alternative way: create subsets of data and localize data source for each geom layer

```r
whiteData <- filter(presVoteEV, nonwhite == 0)
nonwhiteData <- filter(presVoteEV, nonwhite == 1)

altplot <-
  ggplot(mapping = aes(x = rlibcon, y = pe, ymin = lower, ymax = upper)) +
  # Small multiples by candidates
  facet_grid(~ vote92) +
  # For white voters
  geom_line(data = whiteData, aes(colour = blue)) +
  geom_ribbon(data = whiteData, fill = blue, linetype = 0, alpha = 0.5) +
  # For non-white voters
  geom_line(data = nonwhiteData, aes(colour = orange)) +
  geom_line(data = nonwhiteData, aes(y = lower), colour = orange, linetype = 2) +
  geom_line(data = nonwhiteData, aes(y = upper), colour = orange, linetype = 2) +
  # To create a legend that recognizes color strings
  scale_color_identity(labels = c("White", "Non-white"), guide = "legend") +
  # Other adjustments
  scale_x_continuous(breaks = 1:7) +
  scale_y_continuous(breaks = seq(0, 1, 0.2), limits = c(0, 1),
                     expand = c(0, 0)) +
  theme_caviz_hgrid +
  theme(legend.position = c(0.07, 0.13), legend.key.size = unit(0.2, "cm")) +
  labs(y = "Predicted prob. of voting", x = "Ideological self-placement")
```
See the result:

```R
print(altplot)
```
Last exercise: 1992 Presidential Election

To create facet-specific labels, you need a separate dataframe with the x and y coordinates, labels, and the variable used in facet_wrap for identification

candidates <- c("Clinton", "Perot", "Bush")

facet_labels <-
 tibble(vote92 = rep(candidates, each = 2),
 nonwhite = rep(c(0, 1), 3),
 label = rep(c("White", "Non-white"), 3),
 x_coord = c(1.5, 6.3, 1.4, 6.6, 1.4, 6.3),
 y_coord = c(0.5, 0.75, 0.32, 0.105, 0.32, 0.13)) %>%
 mutate(vote92 = factor(vote92, levels = candidates),
 nonwhite = factor(nonwhite))

print(facet_labels)

A tibble: 6 x 5
vote92 nonwhite label x_coord y_coord
<fct> <fct> <chr> <dbl> <dbl>
1 Clinton 0 White 1.5 0.5
2 Clinton 1 Non-white 6.3 0.75
3 Perot 0 White 1.4 0.32
4 Perot 1 Non-white 6.6 0.105
5 Bush 0 White 1.4 0.32
6 Bush 1 Non-white 6.3 0.13
Last exercise: 1992 Presidential Election

To create facet-specific labels, you need a separate dataframe with the x and y coordinates, labels, and the variable used in `facet_wrap` for identification.

```r
p + geom_text(data = facet_labels,
              aes(x = x_coord,
                  y = y_coord,
                  label = label,
                  color = nonwhite),
              size = 2.5) + theme(legend.position = "none")
```
Ropeladder exercise: Cy Young award

- Model results cyyoungFD.csv can be found on the course website
 - Background: North American baseball pitchers from 1980 to 2002 competing for the Cy Young Award
 - Outcome: binary; winning the Cy Young Award or not
 - Model: logistic regression
 - Note: estimated quantities of interests (e.g. first differences) are obtained via simcf, Zelig, or ggeffects packages
 - Variables in the model (not that they are important...):

<table>
<thead>
<tr>
<th>Rows/Columns</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>winpct</td>
<td>The percentage of games which the pitcher personally won</td>
</tr>
<tr>
<td>era</td>
<td>The number of runs the pitcher allows per 9 innings</td>
</tr>
<tr>
<td>strikeout</td>
<td>The number of strikeouts the pitcher collected over a season</td>
</tr>
<tr>
<td>innings</td>
<td>The number of innings (periods) a pitcher played during the season</td>
</tr>
<tr>
<td>walks</td>
<td>The number of walks the pitcher collected over a season</td>
</tr>
<tr>
<td>pe</td>
<td>The first difference in expected prob. of winning Cy Young Award</td>
</tr>
<tr>
<td>lower</td>
<td>Lower bound of the 95% confidence intervals</td>
</tr>
<tr>
<td>upper</td>
<td>Upper bound of the 95% confidence intervals</td>
</tr>
</tbody>
</table>
Ropeladder exercise: Cy Young award

cyyoungFD <- read_csv("data/cyyoungFD.csv")
cyyoungFD

```
## # A tibble: 5 x 7
## #  covariate  pe_m1  lower_m1 upper_m1  pe_m2  lower_m2 upper_m2
## <chr>       <dbl>   <dbl>  <dbl>   <dbl>   <dbl>  <dbl>  
## 1 winpct     0.342   0.192  0.484   0.198   0.111  0.280  
## 2 era        -0.599 -0.749 -0.314 -0.347 -0.434 -0.182  
## 3 strikeout  0.223  -0.0793 0.403   0.129 -0.0459 0.233  
## 4 innings    0.277   -0.437 0.465   0.160 -0.253 0.269  
## 5 walks      0.0808  -0.299 0.320   0.0468 -0.173 0.185  
```
Ropeladder exercise: Cy Young award

- Major challenges:
 1. How do we reformat the data in a “tidy way”?
 2. How do we create a variable that classifies statistically significant covariates from non-significant ones?
 - How can we indicate statistical non-significance using white-filled circles?
 3. How do we plot the model results as a ropeladder?
 4. How can we sort the covariates according to their effect sizes?
 5. How can we juxtapose two models’ results effectively?
Ropeladder exercise: Cy Young award

1. How do we reformat the data in a “tidy way”?
 - Motivation: create a column model with values \{m1, m2\} such that we can map model to aesthetics
 - i.e. `aes(colour = model)`
 - We need to learn `pivot_longer` and `pivot_wider` (available in the recent tidyverse versions)
 - Update by `update.packages("tidyverse")`

```r
## # A tibble: 10 x 5
## #  covariate model  pe  lower  upper
## #  <chr> <chr> <dbl> <dbl> <dbl>
##  1 winpct m1 0.342 0.192 0.484
##  2 era m1 -0.599 -0.749 -0.314
##  3 strikeout m1 0.223 -0.0793 0.403
##  4 innings m1 0.277 -0.437 0.465
##  5 walks m1 0.0808 -0.299 0.320
##  6 winpct m2 0.198 0.111 0.280
##  7 era m2 -0.347 -0.434 -0.182
##  8 strikeout m2 0.129 -0.0459 0.233
##  9 innings m2 0.160 -0.253 0.269
## 10 walks m2 0.0468 -0.173 0.185
```
Ropeladder exercise: Cy Young award

1. How do we reformat the data in a “tidy way”?

print(cyyoungFD)

```r
## # A tibble: 5 x 7
## #  covariate     pe_m1 lower_m1 upper_m1 pe_m2 lower_m2 upper_m2
## #  <chr>         <dbl> <dbl>   <dbl> <dbl>  <dbl>   <dbl> <dbl>
## 1 winpct        0.342  0.192  0.484  0.198  0.111  0.280
## 2 era           -0.599 -0.749 -0.314 -0.347 -0.434 -0.182
## 3 strikeout     0.223  -0.0793 0.403  0.129 -0.0459 0.233
## 4 innings      0.277  -0.437  0.465  0.160 -0.253  0.269
## 5 walks        0.0808 -0.299  0.320  0.0468 -0.173  0.185
```
1. How do we reformat the data in a “tidy way”?

cyyoungFD %>%
 pivot_longer(cols = pe_m1:upper_m2,
 names_to = "col_names",
 values_to = "value")

A tibble: 30 x 3
covariate col_names value
<chr> <chr> <dbl>
1 winpct pe_m1 0.342
2 winpct lower_m1 0.192
3 winpct upper_m1 0.484
4 winpct pe_m2 0.198
5 winpct lower_m2 0.111
6 winpct upper_m2 0.280
7 era pe_m1 -0.599
8 era lower_m1 -0.749
9 era upper_m1 -0.314
10 era pe_m2 -0.347
... with 20 more rows
Ropeladder exercise: Cy Young award

1. How do we reformat the data in a “tidy way”?

cyyoungFD %>%
pivot_longer(cols = pe_m1:upper_m2,
 names_to = "col_names",
 values_to = "value") %>%
separate(col_names, into = c("stat", "model"), sep = "_")

A tibble: 30 x 4
covariate stat model value
<chr> <chr> <chr> <dbl>
1 winpct pe m1 0.342
2 winpct lower m1 0.192
3 winpct upper m1 0.484
4 winpct pe m2 0.198
5 winpct lower m2 0.111
6 winpct upper m2 0.280
7 era pe m1 -0.599
8 era lower m1 -0.749
9 era upper m1 -0.314
10 era pe m2 -0.347
... with 20 more rows
Ropeladder exercise: Cy Young award

1. How do we reformat the data in a “tidy way”?

```r
cyyoungFD %>%
pivot_longer(cols = pe_m1:upper_m2,
  names_to = "col_names",
  values_to = "value") %>%
separate(col_names, into = c("stat", "model"), sep = "_") %>%
pivot_wider(names_from = stat, values_from = value)
```

```
# A tibble: 10 x 5
#  covariate model     pe  lower  upper
#  <chr>   <chr>   <dbl>  <dbl>  <dbl>
#1  winpct  m1     0.342   0.192  0.484
#2  winpct  m2     0.198   0.111  0.280
#3    era  m1     -0.599  -0.749 -0.314
#4    era  m2     -0.347  -0.434 -0.182
#5  strikeout  m1    0.223  -0.0793  0.403
#6  strikeout  m2    0.129  -0.0459  0.233
#7    innings m1    0.277  -0.437   0.465
#8    innings m2    0.160  -0.253   0.269
#9    walks  m1    0.0808 -0.299    0.320
#10    walks  m2    0.0468 -0.173   0.185
```
Ropeladder exercise: Cy Young award

1. How do we reformat the data in a “tidy way”?

```r
cyyoungFD <- cyyoungFD %>%
  pivot_longer(cols = pe_m1:upper_m2,
              names_to = "col_names",
              values_to = "value") %>%
  separate(col_names, into = c("stat", "model"), sep = ",") %>%
  pivot_wider(names_from = stat, values_from = value) %>%
  arrange(model)

print(cyyoungFD)
```

A tibble: 10 x 5
covariate model pe lower upper
<chr> <chr> <dbl> <dbl> <dbl>
1 winpct m1 0.342 0.192 0.484
2 era m1 -0.599 -0.749 -0.314
3 strikeout m1 0.223 -0.0793 0.403
4 innings m1 0.277 -0.437 0.465
5 walks m1 0.0808 -0.299 0.320
6 winpct m2 0.198 0.111 0.280
7 era m2 -0.347 -0.434 -0.182
8 strikeout m2 0.129 -0.0459 0.233
9 innings m2 0.160 -0.253 0.269
10 walks m2 0.0468 -0.173 0.185
Ropeladder exercise: Cy Young award

2. How do we create a variable that classifies statistically significant covariates from non-significant ones?
 ▶ How do we know if a covariate’s effect is statistically significant or not?

```r
cyyoungFD
```

```r
# A tibble: 10 x 5
## covariate model pe lower upper
## <chr> <chr> <dbl> <dbl> <dbl>
## 1 winpct m1 0.342 0.192 0.484
## 2 era m1 -0.599 -0.749 -0.314
## 3 strikeout m1 0.223 -0.0793 0.403
## 4 innings m1 0.277 -0.437 0.465
## 5 walks m1 0.0808 -0.299 0.320
## 6 winpct m2 0.198 0.111 0.280
## 7 era m2 -0.347 -0.434 -0.182
## 8 strikeout m2 0.129 -0.0459 0.233
## 9 innings m2 0.160 -0.253 0.269
## 10 walks m2 0.0468 -0.173 0.185
```
2. How do we create a variable that classifies statistically significant covariates from non-significant ones?

```r
# A tibble: 10 x 6
#  covariate model  pe  lower upper signif
#1 winpct  m1    0.342  0.192 0.484 TRUE
#2 era     m1   -0.599 -0.749-0.314 TRUE
#3 strikeout m1   0.223 -0.0793 0.403 FALSE
#4 innings m1   0.277 -0.437  0.465 FALSE
#5 walks   m1    0.0808 -0.299 0.320 FALSE
#6 winpct  m2    0.198  0.111 0.280 TRUE
#7 era     m2   -0.347 -0.434-0.182 TRUE
#8 strikeout m2   0.129 -0.0459 0.233 FALSE
#9 innings m2   0.160 -0.253  0.269 FALSE
#10 walks  m2   0.0468 -0.173 0.185 FALSE
```
Ropeladder exercise: Cy Young award

3. How do we plot the model results as a ropeladder?
 ▶ Practice: focus on model 1 and replicate the graph below
 ▶ Hints: check out `geom_pointinrange()`

```r
cyyoungFD %>%
  filter(model == "m1") %>%
  ggplot(...)  
```

```
geometry is here: geom_pointinrange()  
```

![Diagram of a ropeladder plot with covariates such as win pct, walks, strikeout, innings, and era. The plot shows horizontal ranges for each covariate with points indicating the model results.]
Ropeladder exercise: Cy Young award

3. How do we plot the model results as a ropeladder?
 ▶ Old method: `coord_flip()`

```r
# Old method: coord_flip()
cyyoungFD %>%
  filter(model == "m1") %>%
  ggplot(aes(x = covariate, y = pe, ymax = upper, ymin = lower)) +
  geom_pointRange()```

![Graph showing ropeladder plot with covariates and pe values]
Ropeladder exercise: Cy Young award

3. How do we plot the model results as a ropeladder?
   - Old method: `coord_flip()`

```r
cyyoungFD %>%
 filter(model == "m1") %>%
 ggplot(aes(x = covariate, y = pe, ymax = upper, ymin = lower)) +
 geom_pointrange() +
 coord_flip()
```

![Ropeladder plot diagram]
Ropeladder exercise: Cy Young award

3. How do we plot the model results as a ropeladder?
   ▶ Old method: `coord_flip()`

```r
Old method: coord_flip()

cyyoungFD %>%
 filter(model == "m1") %>%
 ggplot(aes(x = covariate, y = pe, ymax = upper, ymin = lower)) +
 geom_pointrange() +
 coord_flip() +
 scale_y_continuous(sec.axis = dup_axis(~ .))
```
Ropeladder exercise: Cy Young award

3. How do we plot the model results as a ropeladder?
   ▶ New method: native xmax and xmin inputs in new ggplot2
   ▶ But problems with legend keys displayed in wrong orientation

```r
library(ggplot2)
cyyoungFD %>%
 filter(model == "m1") %>%
 ggplot(aes(y = covariate, x = pe, xmax = upper, xmin = lower)) +
 geom_pointrange() +
 scale_x_continuous(sec.axis = dup_axis(~ .))
```

![Graph showing ropeladder plot with variables era, innings, strikeout, walks, winpct on the y-axis and pe on the x-axis.](image)
3. How do we plot the model results as a ropeladder?

   - Preferred method: `ggstance` package implements horizontal versions of different geoms with correctly oriented legend keys

```
library(ggstance)

cyyoungFD %>%
 filter(model == "m1") %>%
 ggplot(aes(y = covariate, x = pe, xmax = upper, xmin = lower)) +
 geom_pointrangeh() + # note the "h" at the end
 scale_x_continuous(sec.axis = dup_axis(~ .))
```
Ropeladder exercise: Cy Young award

4. How can we sort the covariates according to their effect sizes?

▶ `fct_reorder()` from `forcats` package (in `tidyverse`)

cyyoungFD %>%
  filter(model == "m1") %>%
  mutate(covariate = fct_reorder(covariate, pe, .desc = TRUE)) %>%
  ggplot(aes(y = covariate, x = pe, xmax = upper, xmin = lower)) +
  geom_pointrangeh() +
  scale_x_continuous(sec.axis = dup_axis(~ .)) +
  labs(y = NULL)
Ropeladder exercise: Cy Young award

4. How can we sort the covariates according to their effect sizes?
   ▶ `fct_reorder()` from `forcats` package (in `tidyverse`)

```r
cyyoungFD %>%
 filter(model == "m1") %>%
 ggplot(aes(y = fct_reorder(covariate, pe, .desc = TRUE),
 x = pe, xmax = upper, xmin = lower)) +
 geom_pointrangeh() +
 scale_x_continuous(sec.axis = dup_axis(~ .)) +
 labs(y = NULL)
```

![Graph showing the effect sizes of covariates for the Cy Young award exercise.](image)
5. How can we juxtapose two models’ results effectively?

▶ If you simply map model to colour...

ggplot(cyyoungFD, aes(y = fct_reorder(covariate, pe, .desc = TRUE),
                      x = pe, xmax = upper, xmin = lower,
                      colour = model)) +
geom_pointrangeh() +
scale_x_continuous(sec.axis = dup_axis(~ .)) +
labs(y = NULL)
5. How can we juxtapose two models’ results effectively?

- Use `position_dodge2v` inside `geom_pointrange()`

```r
ggplot(cyyoungFD, aes(y = fct_reorder(covariate, pe, .desc = TRUE),
 x = pe, xmax = upper, xmin = lower,
 colour = model)) +
geom_pointrangex(position = position_dodge2v(height = 0.7)) +
geom_pointranged(position = position_dodge2v(height = 0.7)) +
scale_x_continuous(sect.axis = dup_axis(~ .)) +
labs(y = NULL)
```
Ropeladder exercise: Cy Young award

Remaining challenge: How can we indicate statistical non-significance using white-filled circles?

First Difference in Predicted Probabilities in winning CY Young

<table>
<thead>
<tr>
<th>Variable</th>
<th>Model 1</th>
<th>Model 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>era</td>
<td></td>
<td></td>
</tr>
<tr>
<td>walks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>strikeout</td>
<td></td>
<td></td>
</tr>
<tr>
<td>innings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>winpct</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

First Difference in Predicted Probabilities in winning CY Young
Ropeladder exercise: Cy Young award

```r
Wrangle data before visualization
cyyoungFD <- cyyoungFD %>%
 mutate(covariate = fct_reorder(covariate, pe, .desc = TRUE),
 model = case_when(model == "m1" ~ "Model 1",
 model == "m2" ~ "Model 2"))

Get nice colors
brewer <- brewer.pal(9, "Set1")
blue <- Brewer[2]
orange <- Brewer[5]
```
Ropeladder exercise: Cy Young award

```r
ggplot(cyyoungFD, aes(y = covariate, x = pe, xmax = upper, xmin = lower, colour = model)) +
 geom_pointrangeh(position = position_dodge2v(height = 0.7)) +
 scale_colour_manual(values = c(blue, orange)) +
 scale_x_continuous(sec.axis = dup_axis(~ .))
```
Ropeladder exercise: Cy Young award

```r
ggplot(cyyoungFD, aes(y = covariate, x = pe, xmax = upper, xmin = lower, colour = model)) +
 geom_vline(xintercept = 0) +
 geom_pointrangeh(position = position_dodge2v(height = 0.7)) +
 scale_colour_manual(values = c(blue, orange)) +
 scale_x_continuous(sec.axis = dup_axis(~ .))
```
Ropeladder exercise: Cy Young award

```r
ggplot(cyyoungFD, aes(y = covariate, x = pe, xmax = upper, xmin = lower,
 colour = model, shape = signif, fill = signif)) +
 geom_vline(xintercept = 0) +
 geom_pointrangeh(position = position_dodge2v(height = 0.7)) +
 scale_colour_manual(values = c(blue, orange)) +
 scale_x_continuous(sec.axis = dup_axis(~ .))
```
Ropeladder exercise: Cy Young award

See all possible shapes here

- 21 = fillable circle; 19 = solid (non-fillable) circle

```r
ggplot(cyyoungFD, aes(y = covariate, x = pe, xmax = upper, xmin = lower,
 colour = model, shape = signif, fill = signif)) +
 geom_vline(xintercept = 0) +
 geom_pointrangeh(position = position_dodge2v(height = 0.7)) +
 scale_colour_manual(values = c(blue, orange)) +
 scale_shape_manual(values = c(21, 19)) +
 scale_fill_manual(values = c("white", NA)) +
 scale_x_continuous(sec.axis = dup_axis(~ .))
```

![Graph showing the relationship between covariates and pe for different models and significance levels.](image-url)
Ropeladder exercise: Cy Young award

```r
ggplot(cyyoungFD, aes(y = covariate, x = pe, xmax = upper, xmin = lower,
 colour = model, shape = signif, fill = signif)) +
 geom_vline(xintercept = 0) +
 geom_pointrangeh(position = position_dodge2v(height = 0.7)) +
 scale_colour_manual(values = c(blue, orange)) +
 scale_shape_manual(values = c(21, 19)) +
 scale_fill_manual(values = c("white", NA)) +
 scale_x_continuous(sec.axis = dup_axis(~ .)) +
 guides(shape = "none", fill = "none") +
 labs(y = NULL, x = "First difference in predicted prob. in winning Cy Young")
```

First difference in predicted prob. in winning Cy Young

![Graph showing first difference in predicted probability of winning the Cy Young award.](image)
Ropeladder exercise: Cy Young award

Full code:

```r
ggplot(cyyoungFD, aes(y = covariate, x = pe, xmax = upper, xmin = lower,
 colour = model, shape = signif, fill = signif)) +
 geom_vline(xintercept = 0) +
 geom_pointrangeh(position = position_dodge2v(height = 0.7)) +
 scale_colour_manual(values = c(blue, orange)) +
 scale_shape_manual(values = c(21, 19)) +
 scale_fill_manual(values = c("white", NA)) +
 scale_x_continuous(sec.axis = dup_axis(~ .), labels = scales::percent) +
 guides(shape = "none", fill = "none") +
 labs(y = NULL, x = "First difference in predicted prob. in winning Cy Young")
 theme_caviz_vgrid +
 theme(legend.position = c(0.13, 0.125), axis.ticks.x = element_blank())
```
Ropeladder exercise: Cy Young award

First Difference in Predicted Probabilities in winning CY Young

- era
- walks
- strikeout
- innings
- winpct

Model 1
Model 2
Heatmap exercise: scaling colour and fill

- This example is taken from Francis (2019)
- Data: Measles level 1 incidence (cases per 100,000 people)
- Coverage: 51 US states; 76 years (3,876 observations)
Heatmap exercise: scaling colour and fill

```r
Load data
measles <- read_csv("data/measles.csv")

Rows: 3876 Columns: 4

-- Column specification ---
Delimiter: ","
chr (2): state, countCat
dbl (2): year, count

i Use ‘spec()’ to retrieve the full column specification
i Specify the column types or set ‘show_col_types = FALSE’

head(measles)

A tibble: 6 x 4
year state count countCat
<dbl> <chr> <dbl> <chr>
```

```r
<dbl> <chr> <dbl> <chr>
1 1928 Alabama 335. 100-500
2 1928 Alaska NA <NA>
3 1928 Arizona 201. 100-500
4 1928 Arkansas 482. 100-500
5 1928 California 69.2 10-100
6 1928 Colorado 207. 100-500
```
Heatmap exercise: scaling colour and fill

```r
Factorize variables
levels <- rev(c("0", "0-1", "1-10", "10-100", "100-500", "500-1000", ">1000"))

measles <- measles %>%
 mutate(
 year = factor(year),
 state = factor(state),
 countCat = factor(countCat, levels = levels)
)

head(measles)
```

```r
A tibble: 6 x 4
year state count countCat
<fct> <fct> <dbl> <fct>
1 1928 Alabama 335. 100-500
2 1928 Alaska NA <NA>
3 1928 Arizona 201. 100-500
4 1928 Arkansas 482. 100-500
5 1928 California 69.2 10-100
6 1928 Colorado 207. 100-500
```
Heatmap exercise: scaling colour and fill

```r
ggplot(measles, aes(x = year, y = state, fill = count)) +
geom_tile()
```
Heatmap exercise: scaling colour and fill

▶ For continuous color values, use `scale_fill_gradient`
▶ To pick colors, reference here

```r
ggplot(measles, aes(x = year, y = state, fill = count)) +
 geom_tile() +
 scale_fill_gradient(high = "#d7191c", low = "#a6d96a", na.value = "grey90")
```
Heatmap exercise: scaling colour and fill

Plot the categorical variable, `countCat`, instead

```r
ggplot(measles, aes(x = year, y = state, fill = countCat)) + geom_tile()
```
Heatmap exercise: scaling colour and fill

▶ For categorical color values, use `scale_fill_brewer`
▶ Run `RCOLORBrewer::display.brewer.all()` for all palettes

```r
ggplot(measles, aes(x = year, y = state, fill = countCat)) +
 geom_tile() +
 scale_fill_brewer(palette = "YlGnBu", direction = -1, na.value = "grey90")
```

![Heatmap of measles data with color scale and fill settings](image)
Heatmap exercise: scaling colour and fill

- Alternatively, use RColorBrewer and `scale_fill_manual`

```r
blues <- rev(brewer.pal(7, "YlGnBu"))

ggplot(measles, aes(x = year, y = state, fill = countCat)) +
 geom_tile() +
 scale_fill_manual(values = blues, na.value = "grey90")
```
Heatmap exercise: scaling colour and fill

Use cluster analysis to sort the states

ggplot(measles, aes(x = year, y = state, fill = countCat)) +
  geom_tile() +
  scale_fill_manual(values = blues, na.value = "grey90")
Heatmap exercise: scaling colour and fill

Final product; see more details here:

```
hm <-
 ggplot(measles, aes(x = year, y = state, fill = countCat)) +
 # add border white colour of line thickness 0.25
 geom_tile(colour = "white", size = 0.25) +
 # scale fill with "YlGnBu" palette
 scale_fill_brewer(palette = "YlGnBu", direction = -1, na.value = "grey90") +
 # define new breaks on x-axis
 scale_x_discrete(expand = c(0, 0), breaks = seq(1930, 2000, 10)) +
 # remove extra space
 scale_y_discrete(expand = c(0, 0)) +
 # set a base size for all fonts
 theme_grey(base_size = 8) +
 # theme options
 theme(
 # bold font for legend text
 legend.text = element_text(face = "bold"),
 # set thickness of axis ticks
 axis.ticks = element_line(size = 0.4),
 # remove plot background
 plot.background = element_blank(),
 # remove plot border
 panel.border = element_blank(),
 # reshape the legend keys
 legend.key.height = grid::unit(0.8, "cm"),
 legend.key.width = grid::unit(0.2, "cm")
) +
 # legend title
 guides(fill = guide_legend(title = "Cases per\n100,000 people")) +
 # remove x and y axis labels; define title
 labs(x = NULL, y = NULL, title = "Incidence of Measles in the US")
```
With `ggplot2` as the core package, an ecosystem of supporting packages have been developed.
With `ggplot2` as the core package, an ecosystem of supporting packages have been developed.

- See the gallery here.
With `ggplot2` as the core package, an ecosystem of supporting packages have been developed

- See the gallery [here](#)
- I highlight several packages
**ggplot2 extension packages**

- With `ggplot2` as the core package, an ecosystem of supporting packages have been developed
  - See the gallery [here](#)
- I highlight several packages
  - We’ve used: `ggrepel`, `ggstance`
ggplot2 extension packages

► With ggplot2 as the core package, an ecosystem of supporting packages have been developed
  ► See the gallery here
► I highlight several packages
  ► We’ve used: ggrepel, ggstance
  ► gghighlight
With `ggplot2` as the core package, an ecosystem of supporting packages has been developed

- See the gallery [here](#)

I highlight several packages

- We’ve used: `ggrepel`, `ggstance`
- `gghighlight`
- `ggridges`
ggplot2 extension packages

- With ggplot2 as the core package, an ecosystem of supporting packages have been developed
  - See the gallery here
- I highlight several packages
  - We’ve used: ggrepel, ggstance
  - gghighlight
  - ggridges
  - cowplot