CSSS 569 Visualizing Data and Models
Lab 1: Intro to labs and R Markdown

Ramses Llobet

Department of Political Science, UW

January 6, 2022
Let’s talk about me

▸ I’m from Barcelona, Spain. However, I lived and worked in CZ and the UK.
Let’s talk about me

► I’m from Barcelona, Spain. However, I lived and worked in CZ and the UK.
► Ph.D. student (2nd year) in Political Science.
Let’s talk about me

- I’m from Barcelona, Spain. However, I lived and worked in CZ and the UK.
- Ph.D. student (2nd year) in Political Science.
 - Political Economy.
Let’s talk about me

- I’m from Barcelona, Spain. However, I lived and worked in CZ and the UK.
- Ph.D. student (2nd year) in Political Science.
 - Political Economy.
 - Methodology.
Let’s talk about me

▶ I’m from Barcelona, Spain. However, I lived and worked in CZ and the UK.
▶ Ph.D. student (2nd year) in Political Science.
 ▶ Political Economy.
 ▶ Methodology.
▶ 9 months of experience as a data scientist in the mathematics department from the University of Essex, UK.
Let’s talk about me

- I’m from Barcelona, Spain. However, I lived and worked in CZ and the UK.
- Ph.D. student (2nd year) in Political Science.
 - Political Economy.
 - Methodology.
- 9 months of experience as a data scientist in the mathematics department from the University of Essex, UK.
- This is my first time instructing a methods course.
The current version of the lab materials is adapted from those drafted by our two previous TAs for this course, Brian Leung and Kenya Amano.
The current version of the lab materials is adapted from those drafted by our two previous TAs for this course, Brian Leung and Kenya Amano.

I plan to complement and extend some of the lectures (I am open to input).
Logistics

Lab sections:

- Section AA: Fridays, 10:30 - 11:30 pm
- Section AB: Fridays, 3:30 - 4:30 pm

Office hours:
- After the labs: 11:30 to 12:20 pm and 4:30 to 5:20 pm.
- By appointment.

Lab materials will be available at Chris's course website.

Use Slack channel.
Logistics

- **Lab sections:**
 - Section AA: Fridays, 10:30 - 11:30 pm
Logistics

Lab sections:
- Section AA: Fridays, 10:30 - 11:30 pm
- Section AB: Fridays, 3:30 - 4:30 pm
Logistics

- **Lab sections:**
 - Section AA: Fridays, 10:30 - 11:30 pm
 - Section AB: Fridays, 3:30 - 4:30 pm

- **Office hours:**
 - After the labs: 11:30 to 12:20 pm and 4:30 to 5:20 pm.
 - By appointment.

Lab materials will be available at Chris's course website.
Use Slack channel.
Logistics

- **Lab sections:**
 - Section AA: Fridays, 10:30 - 11:30 pm
 - Section AB: Fridays, 3:30 - 4:30 pm

- **Office hours:**
 - After the labs: 11:30 to 12:20 pm and 4:30 to 5:20 pm.
Logistics

- **Lab sections:**
 - Section AA: Fridays, 10:30 - 11:30 pm
 - Section AB: Fridays, 3:30 - 4:30 pm

- **Office hours:**
 - After the labs: 11:30 to 12:20 pm and 4:30 to 5:20 pm.
 - By appointment.

Lab materials will be available at Chris's course website. Use Slack channel.
Logistics

- **Lab sections:**
 - Section AA: Fridays, 10:30 - 11:30 pm
 - Section AB: Fridays, 3:30 - 4:30 pm

- **Office hours:**
 - After the labs: 11:30 to 12:20 pm and 4:30 to 5:20 pm.
 - By appointment.

- **Lab materials will be available at Chris’s course webstie.**
Logistics

- **Lab sections:**
 - Section AA: Fridays, 10:30 - 11:30 pm
 - Section AB: Fridays, 3:30 - 4:30 pm

- **Office hours:**
 - After the labs: 11:30 to 12:20 pm and 4:30 to 5:20 pm.
 - By appointment.

- Lab materials will be available at Chris’s course webstie.

- Use Slack channel.
Homework Submission

▶ Submit a *PDF* file to submit in Canvas.
Homework Submission

- Submit a *PDF* file to submit in Canvas.
- File name with three elements:

 \[
 (\text{CSSS569})(\text{HWN}^{\circ})(\text{NameSurname})
 \]
Submit a *PDF* file to submit in Canvas.

File name with three elements:

(CSSS569)(HWNº)(NameSurname)

e.g.: CSSS569HW1RamsesLlobet (no space)
My approaches to labs

1. Intelligibility

 - Clean graphs: let the data, rather than designs, speak.
 - Tidy code: program in a way that you can read the code out loud and explain it to others.

2. Applicability

 - Add new techniques, tricks or tools to your toolkit every week.
 - Start thinking about some projects: rework your old graphs, prepare for a poster presentation, a thesis, etc.

 Problem Sets 2 and 3 will allow you to explore your own research.

3. Code-oriented labs

 - The main goal of the labs is to provide you with code for your own applications.
 - All the labs will be recorded, so you can go back and check anything.
 - Develop, eventually, your own workflow, critical thinking, and aesthetics.
My approaches to labs

1. Intelligibility
 ► Clean graphs: let the *data*, rather than designs, speak.

2. Applicability
 ► Add new techniques, tricks or tools to your toolkit every week
 ► Start thinking about some projects: rework your old graphs, prepare for a poster presentation, a thesis, etc.
 ► Problem Sets 2 and 3 will allow you to explore your own research.

3. Code-oriented labs
 ► The main goal of the labs is to provide you with code for your own applications.
 ► All the labs will be recorded, so you can go back and check anything.
 ► Develop, eventually, your own workflow, critical thinking, and aesthetics.
My approaches to labs

1. Intelligibility
 - Clean graphs: let the *data*, rather than designs, speak.
 - Tidy code: program in a way that you can read the code out loud and explain it to others.

2. Applicability
 - Add new techniques, tricks or tools to your toolkit every week
 - Start thinking about some projects: rework your old graphs, prepare for a poster presentation, a thesis, etc.
 - Problem Sets 2 and 3 will allow you to explore your own research.

3. Code-oriented labs
 - The main goal of the labs is to provide you with code for your own applications.
 - All the labs will be recorded, so you can go back and check anything.
 - Develop, eventually, your own workflow, critical thinking, and aesthetics.
My approaches to labs

1. Intelligibility
 - Clean graphs: let the *data*, rather than designs, speak.
 - Tidy code: program in a way that you can read the code out loud and explain it to others.

2. Applicability

 Problem Sets 2 and 3 will allow you to explore your own research.

3. Code-oriented labs
 - The main goal of the labs is to provide you with code for your own applications.
 - All the labs will be recorded, so you can go back and check anything.
 - Develop, eventually, your own workflow, critical thinking, and aesthetics.
My approaches to labs

1. Intelligbility
 - Clean graphs: let the *data*, rather than designs, speak.
 - Tidy code: program in a way that you can read the code out loud and explain it to others.

2. Applicablity
 - Add new techniques, tricks or tools to your toolkit *every week*
My approaches to labs

1. Intelligibility
 ▶ Clean graphs: let the data, rather than designs, speak.
 ▶ Tidy code: program in a way that you can read the code out loud and explain it to others.

2. Applicability
 ▶ Add new techniques, tricks or tools to your toolkit every week
 ▶ Start thinking about some projects: rework your old graphs, prepare for a poster presentation, a thesis, etc.
My approaches to labs

1. Intelligibility
 - Clean graphs: let the \textit{data}, rather than designs, speak.
 - Tidy code: program in a way that you can read the code out loud and explain it to others.

2. Applicability
 - Add new techniques, tricks or tools to your toolkit \textit{every week}
 - Start thinking about some projects: rework your old graphs, prepare for a poster presentation, a thesis, etc.
 - \textbf{Problem Sets 2} and \textbf{3} will allow you to explore your own research.
My approaches to labs

1. Intelligibility
 ▶ Clean graphs: let the *data*, rather than designs, speak.
 ▶ Tidy code: program in a way that you can read the code out loud and explain it to others.

2. Applicability
 ▶ Add new techniques, tricks or tools to your toolkit *every week*
 ▶ Start thinking about some projects: rework your old graphs, prepare for a poster presentation, a thesis, etc.
 ▶ **Problem Sets 2** and **3** will allow you to explore your own research.

3. Code-oriented labs
My approaches to labs

1. Intelligibility
 ▶ Clean graphs: let the data, rather than designs, speak.
 ▶ Tidy code: program in a way that you can read the code out loud and explain it to others.

2. Applicablity
 ▶ Add new techniques, tricks or tools to your toolkit every week
 ▶ Start thinking about some projects: rework your old graphs, prepare for a poster presentation, a thesis, etc.
 ▶ Problem Sets 2 and 3 will allow you to explore your own research.

3. Code-oriented labs
 ▶ The main goal of the labs is to provide you with code for your own applications.
My approaches to labs

1. Intelligibility
 - Clean graphs: let the *data*, rather than designs, speak.
 - Tidy code: program in a way that you can read the code out loud and explain it to others.

2. Applicablity
 - Add new techniques, tricks or tools to your toolkit *every week*
 - Start thinking about some projects: rework your old graphs, prepare for a poster presentation, a thesis, etc.
 - **Problem Sets 2 and 3** will allow you to explore your own research.

3. Code-oriented labs
 - The main goal of the labs is to provide you with code for your own applications.
 - All the labs will be recorded, so you can go back and check anything.
My approaches to labs

1. Intelligibility
 ▶ Clean graphs: let the data, rather than designs, speak.
 ▶ Tidy code: program in a way that you can read the code out loud and explain it to others.

2. Applicablity
 ▶ Add new techniques, tricks or tools to your toolkit every week
 ▶ Start thinking about some projects: rework your old graphs, prepare for a poster presentation, a thesis, etc.
 ▶ Problem Sets 2 and 3 will allow you to explore your own research.

3. Code-oriented labs
 ▶ The main goal of the labs is to provide you with code for your own applications.
 ▶ All the labs will be recorded, so you can go back and check anything.
 ▶ Develop, eventually, your own workflow, critical thinking, and aesthetics.
Labs schedule

<table>
<thead>
<tr>
<th>Week</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Setting the Stage</td>
</tr>
<tr>
<td>1</td>
<td>Intro to R Markdown</td>
</tr>
<tr>
<td>2</td>
<td>Intro to (\LaTeX) with Overleaf</td>
</tr>
</tbody>
</table>

Graphic Tools in R

<table>
<thead>
<tr>
<th>Week</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Intro to Base R Graphics and ggplot2</td>
</tr>
<tr>
<td>4</td>
<td>Advanced ggplot2 and Extensions</td>
</tr>
<tr>
<td>5</td>
<td>Intro to tile</td>
</tr>
</tbody>
</table>

Selected Topics (Open to Input)

<table>
<thead>
<tr>
<th>Week</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Visualizing Spatial Data</td>
</tr>
<tr>
<td>7</td>
<td>Visualizing Network Data</td>
</tr>
<tr>
<td>8</td>
<td>Interactive Visual Display with R Shiny</td>
</tr>
<tr>
<td>9</td>
<td>T.B.D.</td>
</tr>
</tbody>
</table>
R Markdown

- R Markdown file (.Rmd) offers an integrated framework.
R Markdown

- R Markdown file (.Rmd) offers an integrated framework.
 - To contain both narrative text and code chunks.
R Markdown

- R Markdown file (.Rmd) offers an integrated framework.
 - To contain both narrative text and code chunks.
 - To render (“knit”) high quality, reproducible outputs.

I write my slides using R Markdown (Beamer). Great way to submit your homework.

L A TEX is supported; more next week.
R Markdown

- R Markdown file (.Rmd) offers an integrated framework.
 - To contain both narrative text and code chunks.
 - To render (“knit”) high quality, reproducible outputs.
 - HTML, PDF, Word, Beamer, etc.
R Markdown

- R Markdown file (.Rmd) offers an integrated framework.
 - To contain both narrative text and code chunks.
 - To render ("knit") high quality, reproducible outputs.
 - HTML, PDF, Word, Beamer, etc.
 - I write my slides using R Markdown (Beamer).
R Markdown

- R Markdown file (.Rmd) offers an integrated framework.
 - To contain both narrative text and code chunks.
 - To render ("knit") high quality, reproducible outputs.
 - HTML, PDF, Word, Beamer, etc.
 - I write my slides using R Markdown (Beamer).
 - Great way to submit your homework.
- L A TEX is supported; more next week.
R Markdown

- R Markdown file (.Rmd) offers an integrated framework.
 - To contain both narrative text and code chunks.
 - To render (“knit”) high quality, reproducible outputs.
 - HTML, PDF, Word, Beamer, etc.
 - I write my slides using R Markdown (Beamer).
 - Great way to submit your homework.
- \LaTeX{} is supported; more next week.
To compile an R Markdown document to PDF, you need to install \LaTeX

- If you haven’t installed any previous \LaTeX distribution, I recommend TinyTeX
- “TinyTeX is a lightweight, portable, cross-platform, and easy-to-maintain \LaTeX distribution”

```r
install.packages('tinytex')
tinytex::install_tinytex()
```

Let’s demonstrate