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Agenda

▶ Box-Jenkins Method
▶ Time Series Diagnostics

▶ Deterministic Trend and De-trend
▶ Detect Seasonality
▶ Discover Autocorrelation in Time Series
▶ Moving average processes
▶ Estimating dynamic models and residuals test
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Box-Jenkins Method

▶ The Box-Jenkins method assumes that time series are
composed by multiple temporal processes.

yt = β0 + β1︸︷︷︸
trend

t +
AR(1)︷︸︸︷
ϕ1 yt−1 + ϕ12︸︷︷︸

cycle

yt−12 +
MA(1)︷︸︸︷
θ1 εt−1 + εt︸︷︷︸

white noises

▶ It then performs diagnostics to compare the observed series
with generic forms to decide what processes occur in the data.
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Box-Jenkins Method
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Deterministic Trend

yt = β0 + β1t + εt , where εt ∼ N (0, σ2)

▶ For every one period increase in t, E(yt) increases in β1.
▶ In this DGP, y ’s dynamic process follows a linear systematic

relationship.
▶ In the sample, once the time series is detrended, the estimated

errors follow white noise.

yt − tβ̂1 = β̂0 + êt , where êt ∼ N (0, σ̂2)

CSSS/POLS 512 - Time Series and Panel Data Methods



Deterministic Trend
Assume the following population model:

y = β0 + β1t + εt

y = 2 + 1.5t + εt
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Deterministic Trend

y − 1.5t = 2 + εt
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Deterministic Trend

slope1 <- lm(y~t) # Find the least squares estimate of the slope
slope1

##
## Call:
## lm(formula = y ~ t)
##
## Coefficients:
## (Intercept) t
## 11.529 1.211

After estimating the model, we get β̂0 = 11.52 and β̂1 = 1.21.
How does it compares with the population model?

y = 2 + 1.5t + εt
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Deterministic Trend
Plot the data with the true beta and the estimated beta.
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Deterministic Trend and Serial Correlation
Assume the following DGP:

y = β0 + ϕ1yt−1 + β1t + εt

y = 2 + 0.33yt−1 + 1.5t + εt

0 10 20 30 40 50

0
40

80
12

0

Simulated Deterministic Trend + Noise + Serial Correlation

Time

y

CSSS/POLS 512 - Time Series and Panel Data Methods



Deterministic Trends and Serial Correlation
After de-trending, serial correlation persists, indicating that the
errors e are not white noise ε.
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Deterministic Trends and Serial Correlation
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Autoregressive Processes

yt = yt−1ϕ1 + ϵt

▶ Past realizations, yt−k , influence current levels of y .
▶ In the AR(1) case, each new realization of yt incorporates the last

period’s realization, yt−1

yt =
∞∑

j=0
ϵt−jϕ

j

▶ If yt is AR(1), then yt includes the effects of every random shock
back to the beginning of time.

▶ When |ϕ1| < 1, then with each passing observation, an increasing
amount of the shock “leaks” out, but never completely disappears
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Analyzing dynamics

When analyzing time series data:

▶ Begin by plotting the original series using plot().
▶ Time series data with trend or seasonal variation exhibits high

autocorrelation, potentially biasing the sample autocorrelation
function (acf).

▶ To address this, detrend, detrend the time series data to
compute the sample acf.

After detrending the original time series:

▶ Use the correlogram alongside the ACF (k) and PACF (k)
statistics to analyze lag behavior.
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Analyzing dynamics: ACF and PACF

▶ The autocorrelation function acf() measures the correlation
between past lags yt−k and the present yt .

▶ The partial autocorrelation function pacf() quantifies the
correlation between yt and yt−k after accounting for
intermediate values.

▶ Notably, acf considers the total variance of y , whereas pacf
partials out or removes the variance between yt and yt−k .
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Autoregressive Processes
Plot of an AR(1) process with no trend:
▶ Notice how in the first periods that it takes longer to revert

towards the mean.
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Autoregressive Processes
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Autoregressive Processes
Simulated AR(1) process with φ1 = 0.8
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Autoregressive Processes
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Autoregressive Processes
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Autoregressive Processes
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Unit Root Tests

yt =
∞∑

j=0
ϵt−jϕ

j

▶ If yt is AR(1), then yt includes the effects of every random
shock back to the beginning of time

▶ When |ϕ1| = 1, then we have a random walk or unit root,
and the impact of the random shocks accumulate over time
rather than dissipate

▶ The mean of the time series is time dependent
(non-stationary)
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Unit Root Tests
#Check for a unit root on one of the AR(1) processes

#Perform a Phillips-Perron test or Augmented Dickey-Fuller test
library(tseries)

## Warning: package ’tseries’ was built under R version 4.3.3

## Registered S3 method overwritten by ’quantmod’:
## method from
## as.zoo.data.frame zoo

PP.test(ar1.1)

##
## Phillips-Perron Unit Root Test
##
## data: ar1.1
## Dickey-Fuller = -4.748, Truncation lag parameter = 4, p-value = 0.01

adf.test(ar1.1)

##
## Augmented Dickey-Fuller Test
##
## data: ar1.1
## Dickey-Fuller = -3.9789, Lag order = 5, p-value = 0.01139
## alternative hypothesis: stationary
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Autoregressive Processes
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Autoregressive Processes
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Unit Root Tests

#Perform a unit root test on the data

#Perform a Phillips-Perron test or Augmented Dickey-Fuller test
PP.test(ar1.4)

##
## Phillips-Perron Unit Root Test
##
## data: ar1.4
## Dickey-Fuller = -3.0827, Truncation lag parameter = 7, p-value = 0.12

adf.test(ar1.4)

##
## Augmented Dickey-Fuller Test
##
## data: ar1.4
## Dickey-Fuller = -3.4858, Lag order = 9, p-value = 0.04367
## alternative hypothesis: stationary
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Autoregressive Processes
Let’s simulate an AR(2) process:

yt = β0 + ϕ1yt−1 + ϕ2yt−2 + ϵt

Simulated AR(2) process with φ1 = 0.5, φ2 =0.2
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Autoregressive Processes
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Unit Root Tests

#Is the time series stationary?

#Confirm results with a unit root test
PP.test(ar2.1)

##
## Phillips-Perron Unit Root Test
##
## data: ar2.1
## Dickey-Fuller = -7.3721, Truncation lag parameter = 4, p-value = 0.01

adf.test(ar2.1)

##
## Augmented Dickey-Fuller Test
##
## data: ar2.1
## Dickey-Fuller = -3.9686, Lag order = 5, p-value = 0.0119
## alternative hypothesis: stationary
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Moving Average Processes

yt = ψ1ϵt−1 + ϵt

▶ Past random shocks, ϵt−k , influence current levels of y
▶ If yt is MA(1), then the stochastic component is a weighted

average of the current and previous error
▶ In an MA(q) process, the effects of past shocks die out after q

periods
▶ MA(q) processes are always stationary for finite q
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Moving Average Processes

yt = 0.5ϵt−1 + ϵt
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Moving Average Processes
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Moving Average Processes
Simulated MA(2) process with ψ1 = 0.3 ψ2 =0.7
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Moving Average Processes
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Moving Average Processes
Simulated MA(5) process with ψ1 = 0.3 ψ2 =0.7 ψ3 =0.5 ψ4 =0.7 ψ5 =1.2
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Moving Average Processes
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Moving Average Processes

What do we learn about the effect of past shocks in an MA(q)
process from the ACFs and PACFs?

How can we identify an AR versus an MA process from the ACF
and PACF.
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ARMA Processes
Simulated ARMA(1,1) process with φ1 = 0.3 and ψ1 = 0.5
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ARMA Processes
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Seasonality
Besides using ACF and PACF to detect seasonality, we use decompose() or stl() to extract seasonality from time
series. This is also known as STL decomposition (Seasonal and Trend decomposition using Loess1). It assumes
that any time series can be decomposed in either additive or multiplicative ways:

▶ Additive model: S + T + L
▶ Multiplicative model: S × T × L = log(S) + log(T ) + log(L)

1This is the abbrevation of Locally Weighted Scatterplot Smoothing or
locally weighted smoothing.
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Seasonality

▶ any cyclical fluctuation in a time series that recurs or repeats
itself at the same phase of the cycle

▶ yt is an additive or multiplicative function of yt−c for some
fixed cycle c (e.g. c = 12 for months)

▶ additive seasonality: corresponding months in different years
share a level component

▶ multiplicative seasonality: corresponding months in different
years related by a factor change
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Practical Rules of ACF and PACF Patterns
To give you a sense, here some general recommendations to detect
possible patterns of ACF and PACF for ARMA models:

▶ AR(p)
▶ ACF: Tails off.
▶ PACF: Cuts off after lag p; PACF(p) = ϕp

▶ MA(q)
▶ ACF: Cuts off after lag q.
▶ PACF: Tails off

▶ ARMA(p, q)
▶ ACF: Tails off
▶ PACF: Tails off

Because it is difficult identify complex dynamic processes. We will
rely on choosing a set of candidate models and test them
statistically.
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How to identify dynamic processes

1. plot() the TS, you can use decompose() or stl() after
transforming the TS into a ts() class object.

2. De-trend and remove seasonality. I recommend to use lm()
and extract the esitmated residuals for next steps.

3. Look at the correlogram of the de-trended data with acf()
and pacf() to get an idea of potential dynamic candidates.
3.1. If the acf() shows a non-decreasing behavior, use
PP.test() and adf.test() to test for unit root.

4. Once you have some model candidates, estimate them using
arima().

5. Choose the final model that provides best fit and returns
white noise evaluating.
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Estimate time series using arima()

arima(x,
order = c(0, 0, 0), # (AR-order, integrate-order, MA-order)
seasonal = list(order = c(0, 0, 0), # seasonality

period = NA), # what period?
include.mean = TRUE,
xreg = NULL)
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Post-estimation statistics

▶ After estimating candidate models, display the output and
assess the fit.
▶ Pay attention to AIC or BIC statistics; smaller values indicate

better fit.
▶ Select the models that best fit the data and perform the

Q-test statistic to check if residuals are white noise.
▶ Use the function Box.test() in R.

▶ The most parsimonious model yielding white noise residuals is
likely the correct dynamic specification.
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Use arima.sim() to Verifty Our Hypothesis
We can use arima.sim() to simulate time series and verify our
guesses. For example, what are the differences in ACF and PACF
between AR process with and without deterministic trend?

set.seed(98105)
ar.trend <- arima.sim(

list(order = c(1, 0, 0), # the functional form of TS
ar = 2/3, # the coefficient for y_{t-1}
ma = NULL, # the coefficient for \epsilon_{t-1}
beta = 4/5, # slope
alpha = 10), # intercept

n = 50 # length of time series
)
ar <- arima.sim(list(order = c(1, 0, 0), ar = 2/3, ma = NULL), n = 50)
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Use arima.sim()
As we discussed before, trend will induce an upward bias in ACF
plot. That’s why we want to de-trend a time series in the first
place.
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Use arima.sim()
Trend can induce slight bias for PACF at t = 1, but it does not
affect PACF plot very much.
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Use arima.sim()

▶ Note that although we know that true ϕ1 is 0.67, the PACF
correlogram of AR(1) with deterministic trend model shows
that ϕ1 is higher than 0.67, even above 0.7. This is because
the trend is affecting the autocorrelation throughout the time.

▶ Therefore, we will need to de-trend the model and than obtain
the correlogram.
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Chris’s custom function

▶ Alternatively to arima.sim(), you want to simulate more
complex dynamic forms, use Chris’s simulation code.

▶ In the .zip file of this lab, look at the folder source.
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Coding Exercise: Identifying Unknown Time Series
Processes

1. Identify the deterministic trend in the time series.
2. Identify the seasonality in the time series.
3. Remove the deterministic trend and seasonality from the time

series.
4. Plot the pattern of ACF and PACF. What functional form do

you think is reasonable in this time series?
5. Estimate model candidates with arima().
6. Select best fitted model with white noise.
7. (optional) arima.sim() to verify your guess.
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Summary for Time Series Diagnostics

In conclusion, to inspect any unknown time series data, we will
need to utilize all available resources, including:

▶ Our generic knowledge about the components of our data
(trend, seasonality, lag, etc)

▶ Applying different tools to test whether the knowledge is
actually right

▶ Deciding whether our model with certain components that we
assume are in the data fits based on statistics such as AIC
(Alkarine Information Criteria)

▶ This whole process is called Box-Jenkins Method. Next
week we will continue the topic of time series diagnostics.
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