CSSS/POLS 510 MLE Lab

Lab 7. Ordered Probit

Minji Jeong

Housekeeping

- Homework 3 is due November 10 (Mon) 4:30pm
 - Answers will be reviewed in Lab 8
 - Grades will be posted the week after next
- Agenda
 - Ordered Probit

Preview

- Ordered Probit.
 - Simulation
 - Estimation: optim and polr
 - Visualization: ggplot and tile

Ordered Probit model

Probabilities we want to estimate in four category case

$$Pr(y_i = 1 | \mathbf{x_i}) = \Phi(\tau_1 - (\alpha + \mathbf{x_i}\beta))$$

$$Pr(y_i = 2 | \mathbf{x_i}) = \Phi(\tau_2 - (\alpha + \mathbf{x_i}\beta)) - \Phi(\tau_1 - (\alpha + \mathbf{x_i}\beta))$$

$$Pr(y_i = 3 | \mathbf{x_i}) = \Phi(\tau_3 - (\alpha + \mathbf{x_i}\beta)) - \Phi(\tau_2 - (\alpha + \mathbf{x_i}\beta))$$

$$Pr(y_i = 4 | \mathbf{x_i}) = 1 - \Phi(\tau_3 - (\alpha + \mathbf{x_i}\beta))$$

To identify the model, we commonly make one of two assumptions:

- ① Assume that $\tau_1 = 0$. This is also the identifying assumption of logit and probit. optim() uses this.
- 2 Assume that $\alpha = 0$. polr() uses this.
 - 2.1. If you use polr(), set argument constant=NA in simcf::oprobitsimev().

The likelihood function for ordered probit finds the β and τ that make the observed data most likely.

Simulating QoI: ordinal probit

- Estimate: MLE $\hat{\beta}, \hat{\tau}$ and its variance $\hat{V}(\hat{\beta}, \hat{\tau})$ \rightarrow optim(), polr()
- Simulate estimation uncertainty from a multivariate normal distribution:

```
Draw \tilde{\beta}, \tilde{\tau} \sim MVN[(\hat{\beta}, \hat{\tau}), \hat{V}(\hat{\beta}, \hat{\tau})]
```

- → MASS::mvrnorm()
- Oreate hypothetical scenarios of your substantive interest: Choose valuese of X: $X_c \to simcf::cfmake()$, cfchange()...

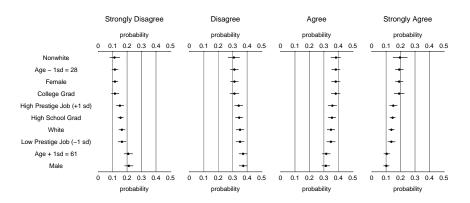
Simulating QoI: ordinal probit

Calculate expected values:

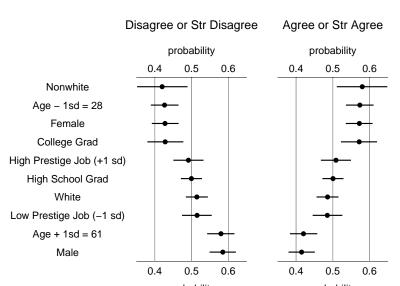
```
\tilde{\pi}_c = g(X_c, \tilde{\beta}, \tilde{\tau})
```

6 Compute EVs, First Differences or Relative Risks

```
EV: \mathbb{E}(y = i | X_{c1}, \tilde{\beta}, \tilde{\tau})
```

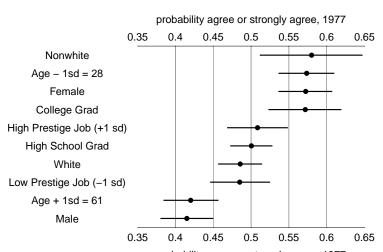

- → simcf::oprobitsimev()...
- FD: $\mathbb{E}(y = i | X_{c2}, \tilde{\beta}, \tilde{\tau}) \mathbb{E}(y = i | X_{c1}, \tilde{\beta}, \tilde{\tau})$
- → simcf::oprobitsimfd()...

RR:
$$\frac{\mathbb{E}(y=j|X_{c2},\tilde{\beta},\tilde{\tau})}{\mathbb{E}(y=j|X_{c1},\tilde{\beta},\tilde{\tau})}$$

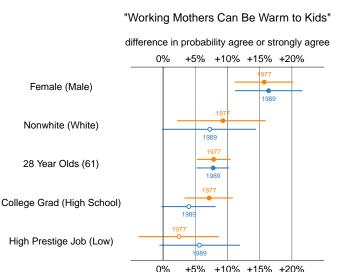

$$\mathbb{E}(y=j|X_{c1},\beta,\tilde{\tau})$$

 \rightarrow simcf::oprobitsimrr()...

Preview: ropeladder plots - 4 category



Preview: ropeladder plots - 2 category



Preview: ropeladder plots - 1 category

"Working Mothers Can Be Warm to Kids"

Preview: ropeladder plots - first differences

Ordinal Probit Lab class

• Let's open RStudio and the file Lab7.Rmd.

FIN