CSSS/POLS 510 MLE Lab

Lab 5. Binary Model, tile, and goodness of fit

Minji Jeong

Housekeeping

- Grades of homework 2 will be released next week
- Answers of homework 2 will be reviewed in lab 6
- Make sure you install simcf and tile packages
- Agenda
 - Binary model
 - Qls with logit model
 - Overview of tile

MLE general notation

$$Y_i \sim f(\theta_i, \alpha)$$
 (stochastic) $\theta_i = g(\mathbf{x}_i \beta)$ (systematic)

where

- Y_i is a random outcome variable.
- f(.) is a probability density function.
- \bullet θ_i is a systematic feature of the PDF that varies over i.
- ullet α is an ancillary parameter (feature of f that we treat as constant).
- \bullet g(.) functional form for reparametrization of the data model.
- x_i explanatory variables vector.
- ullet β vector of effect parameters.

Binary models

$$Y_i \sim f_{Bernoulli}(\pi_i)$$
 (stochastic)
 $\pi_i = g(\mathbf{x}_i \boldsymbol{\beta})$ (systematic)

where

$$\pi_i = logit^{-1}(\mathbf{x}_i \boldsymbol{\beta})$$
 (systematic for logistic model) $\pi_i = probit^{-1}(\mathbf{x}_i \boldsymbol{\beta})$ (systematic for probit model)

Binary model:Overview

- Obtain data
- Think model (distribution/covariates)
- Fit model
- Obtain ML estimates of it
- Interpret those estimates (Estimate QOI)
- Test goodness of fit
- Present your results to a broad audience

Simulating Qol

In order to use simcf to generate quantities of interest, the following steps are needed:

- lacktriangledown Estimate: MLE \hat{eta} and its variance $\hat{V}(\hat{eta})$
- Simulate estimation uncertainty from a multivariate normal distribution:

Draw $\tilde{\beta} \sim MVN[\hat{\beta}, \hat{V}(\hat{\beta})]$

3 Create hypothetical scenarios of your substantive interest: Choose valuese of $X: X_c$

2.1 Simulating Qol

Calculate expected values:

$$\tilde{\mu_c} = g(X_c, \tilde{\beta})$$

Simulate fundamental uncertainty:

$$\tilde{y_c} \sim f(\tilde{\mu_c}, \tilde{\alpha})$$

or

Compute EVs, First Differences or Relative Risks

EV: $\mathbb{E}(y|X_{c1})$

FD:
$$\mathbb{E}(y|X_{c2}) - \mathbb{E}(y|X_{c1})$$

RR: $\frac{\mathbb{E}(y|X_{c2})}{\mathbb{E}(y|X_{c1})}$

Simulating Qol

In order to use simcf to generate quantities of interest, the following steps are needed:

- Estimate: MLE $\hat{\beta}$ and its variance $\hat{V}(\hat{\beta})$ \rightarrow optim(), glm()
- Simulate estimation uncertainty from a multivariate normal distribution:

```
Draw \tilde{\beta} \sim MVN[\hat{\beta}, \hat{V}(\hat{\beta})]
```

- \rightarrow MASS::mvrnorm()
- Oreate hypothetical scenarios of your substantive interest: Choose valuese of X: X_c → simcf::cfmake(), cfchange()...

Simulating Qol

Calculate expected values: $\tilde{\mu_c} = g(X_c, \tilde{\beta})$

Simulate fundamental uncertainty:

```
\tilde{v}_c \sim f(\tilde{\mu}_c, \tilde{\alpha})
\rightarrow simcf::hetnormsimpv()...
```

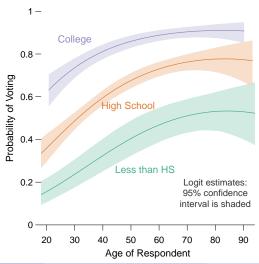
or

Ompute EVs, First Differences or Relative Risks EV: $\mathbb{E}(y|X_{c1})$ \rightarrow simcf::logitsimev()...

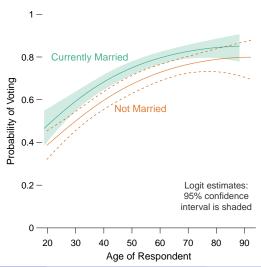
FD:
$$\mathbb{E}(y|X_{c2}) - \mathbb{E}(y|X_{c1})$$

 $\rightarrow \text{simcf::logitsimfd()} \dots$
RR: $\frac{\mathbb{E}(y|X_{c2})}{\mathbb{E}(y|X_{c1})}$

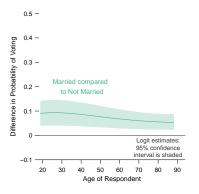
→ simcf::logitsimrr()...

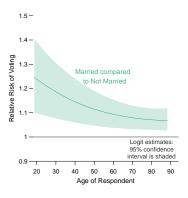

- A fully featured R graphics package built on the grid graphics environment.
- Features:
 - Make standard displays like scatterplots, lineplots, and dotplots
 - Create more experimental formats like ropeladders
 - Summarize uncertainty in inferences from model
 - Avoid extrapolation from the original data underlying your model
 - Fully control titles, annotation, and layering of graphical elements
 - Build your own tiled graphics from primitives
- Work well in combination with simcf package
 - Calculate counterfactual expected values, first differences, and relative risks, and their confidence intervals
 - Among others

- Three steps to make tile plots (from Chris's "Tufte Without Tears")
 - Create data traces: Each trace contains the data and graphical parameters needed to plot a single set of graphical elements to one or more plots
 - Could be a set of points, or text labels, or lines, or a polygon
 - Could be a set of points and symbols, colors, labels, fit line, CIs, and/or extrapolation limits
 - Could be the data for a dotchart, with labels for each line
 - Could be the marginal data for a rug
 - All annotation must happen in this step
 - Basic traces: linesTile(), pointsile(), polygonTile(), polylinesTile(), and textTile()
 - Complex traces: lineplot(), scatter(), ropeladder(), and rugTile()

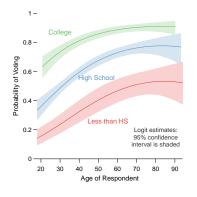

- Primitive trace functions:
 - linesTile(): Plot a set of connected line segments
 - pointsTile(): Plot a set of points
 - polygonTile(): Plot a shaded region
 - polylinesTile(): Plot a set of unconnected line segments
 - textTile(): Plot text labels
- Complex traces for model or data exploration:
 - lineplot(): Plot lines with confidence intervals, extrapolation warnings
 - ropeladder(): Plot dotplots with confidence intervals, extrapolation warnings, and shaded ranges
 - rugTile(): Plot marginal data rugs to axes of plots
 - scatter(): Plot scatterplots with text and symbol markers, fit lines, and confidence intervals

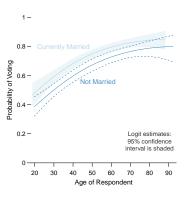
- Three steps to make tile plots (from Chris's "Tufte Without Tears")
 - Create data trace: Each trace contains the data and graphical parameters needed to plot a single set of graphical elements to one or more plots
 - Plot the data traces: Using the tile() function, simultaneously plot all traces to all plots
 - This is the step where the scaffolding gets made: axes and titles
 - Set up the rows and columns of plots
 - Titles of plots, axes, rows of plots, columns of plots, etc.
 - Set up axis limits, ticks, tick labels, logging of axes
 - **Examine output and revise**: Look at the graph made in step 2, and tweak the input parameters for steps 1 and 2 to make a better graph


Expected probabilities and first differences: Voting example



Expected probabilities and first differences: Voting example




Expected probabilities and first differences: Voting example

Variations: Voting example

FIN