CSSS/POLS 510 MLE

Lab 3. Heteroskedastic Normal

Minji Jeong

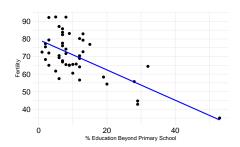
October 10, 2025

Housekeeping

- All Problem Set answers should be submitted on Canvas.
 - Submit your file in pdf form and make sure you present the R code you wrote (echo=TRUE).
 - Project proposal, final paper, and poster should be sent to Chris's email
- PS 1 grade will be released next week.
- For office hours, please contact me 24 hours before the time you want to have a zoom meeting.
- Make sure you install Chris's simcf package.

Least Squares

Linear homoskedastic:


$$Y_i = x_i \beta + \varepsilon, \quad \varepsilon \sim N(0, \sigma^2)$$

• Estimating the slope:

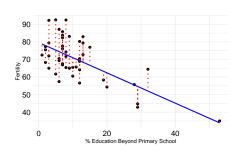
$$\hat{eta}_j = rac{\mathsf{Cov}(X_j, Y)}{\mathsf{Var}(X_i)}$$

Matrix Algebra:

$$\hat{\beta} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

Least Squares

$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i \tag{1}$$


$$\hat{e}_i = y_i - \hat{y}_i \tag{2}$$

$$\sum \hat{e_i}^2 = \sum (y_i - \hat{y}_i)^2$$
 (3)

$$\sum \hat{e_i}^2 = \sum (y_i - \hat{\beta_0} - \hat{\beta_1} x_i)^2 \qquad (4)$$

Note: (3) and (4) are equivalent, and provide the Residual Sum of Squares (RSS) or Sum of Squared Residuals (SSR).

Choosing the best combination of $\hat{\beta}_j$ that minimizes the SSR provide the best fit for the model.

Maximum Likelihood Estimation

- How do we estimate the MLE?
 - **1** Define a probability model (PDF): $Y_i \sim N(\mu_i, \sigma^2)$.
 - 2 Derive the log-likelihood function.
 - 3 Reduce to sufficient statistics and substitute systematic component.
 - Use optim() or any other function to find the maxima.

Normal homoskedastic

Two **different** notations for the **same** model.

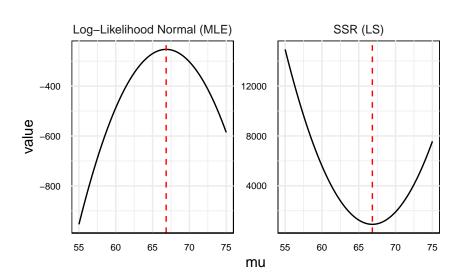
LS notation:

MLE notation:

$$arepsilon_i \sim N(0,\sigma^2)$$
 (stochastic) $Y_i \sim N(\mu_i,\sigma^2)$ (stochastic) $Y_i = x_i \beta$ (systematic) $\mu_i = x_i \beta + \varepsilon$ (stochastic + systematic) $Y_i \sim N(x_i \beta,\sigma^2)$ (stochastic + systematic)

Minji Jeong

MLE general notation


Systematic–Stochastic Decomposition:

$$Y_i \sim f(\theta_i, \alpha)$$
 (stochastic)
 $\theta_i = g(\mathbf{x}_i \boldsymbol{\beta})$ (systematic)

where

- Y_i is a outcome random variable.
- f() is a probability density function.
- θ_i is a systematic feature of the PDF that varies over i.
- ullet α is an ancillary parameter (feature of f that we treat as constant).
- g() functional form for reparametrization of the data model.
- x_i explanatory variables vector.
- ullet β vector of effect parameters.

MLE - Homoskedastic normal

8/10

2. Heteroskedastic normal

- Steps
 - The full R code can be found here from Chris' website
 - Generate Data
 - Fit OLS 1m()
 - Fit MLE optim()

FIN