CS&SS 569 Visualizing Data and Models Lab 2: Intro to LATEX with R Markdown and Overleaf

Brian Leung

Department of Political Science, UW

2023-01-13

Agenda

1. Logistics

Agenda

- 1. Logistics
- 2. R Markdown and HW1

Agenda

- 1. Logistics
- 2. R Markdown and HW1
- 3. LATEX and Overleaf

Homework Submission

▶ Use Canvas not email

R Markdown and HW1

► Problem 1: Attach files (PDF/picture), and offer your critique and remedy

R Markdown and HW1

- ▶ Problem 1: Attach files (PDF/picture), and offer your critique and remedy
- ▶ Problem 2: Read data and reproduce the plot

R Markdown and HW1

- Problem 1: Attach files (PDF/picture), and offer your critique and remedy
- Problem 2: Read data and reproduce the plot
 - Do not spend more than two hours

▶ R Markdown file (.Rmd) offers an integrated framework

- ▶ R Markdown file (.Rmd) offers an integrated framework
 - ► To contain both narrative text, code chunks and outputs such as graphs

- ▶ R Markdown file (.Rmd) offers an integrated framework
 - ► To contain both narrative text, code chunks and outputs such as graphs
 - ► To render ("knit") high quality, reproducible outputs

- ▶ R Markdown file (.Rmd) offers an integrated framework
 - ► To contain both narrative text, code chunks and outputs such as graphs
 - To render ("knit") high quality, reproducible outputs
 - ► HTML, PDF, Word, Beamer, etc.

- R Markdown file (.Rmd) offers an integrated framework
 - ► To contain both narrative text, code chunks and outputs such as graphs
 - ► To render ("knit") high quality, reproducible outputs
 - HTML, PDF, Word, Beamer, etc.
 - I write my slides using R Markdown (in Beamer: a Lass of presentation slides)

- R Markdown file (.Rmd) offers an integrated framework
 - ► To contain both narrative text, code chunks and outputs such as graphs
 - ► To render ("knit") high quality, reproducible outputs
 - ► HTML, PDF, Word, Beamer, etc.
 - I write my slides using R Markdown (in Beamer: a Lass of presentation slides)
 - Great way to submit your homework

- R Markdown file (.Rmd) offers an integrated framework
 - ► To contain both narrative text, code chunks and outputs such as graphs
 - ► To render ("knit") high quality, reproducible outputs
 - ► HTML, PDF, Word, Beamer, etc.
 - I write my slides using R Markdown (in Beamer: a Lass of presentation slides)
 - Great way to submit your homework
 - LATEX code is supported

R Markdown and TinyTeX

► To compile a R Markdown document to PDF, you need to install LATEX

R Markdown and TinyTeX

- ➤ To compile a R Markdown document to PDF, you need to install LATEX
 - ▶ If you haven't installed any previous LaTEX distribution, I recommend TinyTeX

R Markdown and TinyTeX

"TinyTeX is a lightweight, portable, cross-platform, and easy-to-maintain LaTeX distribution":

```
install.packages('tinytex')
tinytex::install_tinytex()
```

R Markdown in practices: two examples

▶ lab2_RMarkdownSample.Rmd: cover most of the basic functionalities in R Markdown; good for future reference

R Markdown in practices: two examples

- ▶ lab2_RMarkdownSample.Rmd: cover most of the basic functionalities in R Markdown; good for future reference
- CSSS569HW1Start.Rmd: a template to get started with HW 1

Break

► T_EX is a *typesetting engine* designed by Donald Knuth, a computer scientist and mathematician at Stanford

- ► T_EX is a *typesetting engine* designed by Donald Knuth, a computer scientist and mathematician at Stanford
 - ▶ For typesetting scientific text and mathematical formulas

- ► T_EX is a *typesetting engine* designed by Donald Knuth, a computer scientist and mathematician at Stanford
 - ► For typesetting scientific text and mathematical formulas
 - Modern extensions of the TEX engines include pdfTeX, XeTeX, LuaTeX, etc.

► LATEX is a document preparation system, or a macro package, built on top of the TEX engine, with features:

- ► LATEX is a document preparation system, or a macro package, built on top of the TEX engine, with features:
 - ▶ Typesetting journal articles, technical reports, books, and slides

- ► LATEX is a document preparation system, or a macro package, built on top of the TEX engine, with features:
 - ► Typesetting journal articles, technical reports, books, and slides
 - Control over large documents containing sectioning, cross-references, tables and figures

- ► LATEX is a document preparation system, or a macro package, built on top of the TEX engine, with features:
 - ► Typesetting journal articles, technical reports, books, and slides
 - Control over large documents containing sectioning, cross-references, tables and figures
 - Typesetting of complex mathematical formulas

- ► LATEX is a document preparation system, or a macro package, built on top of the TEX engine, with features:
 - Typesetting journal articles, technical reports, books, and slides
 - Control over large documents containing sectioning, cross-references, tables and figures
 - ► Typesetting of complex mathematical formulas
 - Advanced typesetting of mathematics with AMS-LaTeX

- ► LATEX is a document preparation system, or a macro package, built on top of the TEX engine, with features:
 - ► Typesetting journal articles, technical reports, books, and slides
 - Control over large documents containing sectioning, cross-references, tables and figures
 - ► Typesetting of complex mathematical formulas
 - Advanced typesetting of mathematics with AMS-LaTeX
 - Automatic generation of bibliographies and indexes

- ► LATEX is a document preparation system, or a macro package, built on top of the TEX engine, with features:
 - Typesetting journal articles, technical reports, books, and slides
 - Control over large documents containing sectioning, cross-references, tables and figures
 - ► Typesetting of complex mathematical formulas
 - Advanced typesetting of mathematics with AMS-LaTeX
 - Automatic generation of bibliographies and indexes
 - Multi-lingual typesetting

- ► LATEX is a document preparation system, or a macro package, built on top of the TEX engine, with features:
 - Typesetting journal articles, technical reports, books, and slides
 - Control over large documents containing sectioning, cross-references, tables and figures
 - ► Typesetting of complex mathematical formulas
 - Advanced typesetting of mathematics with AMS-LaTeX
 - Automatic generation of bibliographies and indexes
 - Multi-lingual typesetting
 - See more here

▶ Popular *implementations, or distributions*, of T_EX/LAT_EX

- ▶ Popular *implementations, or distributions*, of T_EX/LAT_EX
 - ► MacTeX for Mac OS: http://www.tug.org/mactex/

- ▶ Popular *implementations, or distributions*, of T_EX/LAT_EX
 - ► MacTeX for Mac OS: http://www.tug.org/mactex/
 - MiKTeX for Windows: https://miktex.org

► LATEX vs. other word processors (e.g. Microsoft Word)

- ► LATEX vs. other word processors (e.g. Microsoft Word)
 - ► Microsoft Word/Power Point

- ► LATEX vs. other word processors (e.g. Microsoft Word)
 - ► Microsoft Word/Power Point
 - WYSIWYG: What You See Is What You Get

- ► LATEX vs. other word processors (e.g. Microsoft Word)
 - Microsoft Word/Power Point
 - WYSIWYG: What You See Is What You Get
 - You interact with a user interface to control the document layout while typing text

- LATEX vs. other word processors (e.g. Microsoft Word)
 - Microsoft Word/Power Point
 - WYSIWYG: What You See Is What You Get
 - You interact with a user interface to control the document layout while typing text
 - What is displayed on the screen resembles what will be printed

- LATEX vs. other word processors (e.g. Microsoft Word)
 - Microsoft Word/Power Point
 - WYSIWYG: What You See Is What You Get
 - You interact with a user interface to control the document layout while typing text
 - What is displayed on the screen resembles what will be printed
 - ► MEX

- LATEX vs. other word processors (e.g. Microsoft Word)
 - Microsoft Word/Power Point
 - WYSIWYG: What You See Is What You Get
 - You interact with a user interface to control the document layout while typing text
 - ▶ What is displayed on the screen resembles what will be printed
 - ▶ LATEX
 - You provide "LaTeX commands" to specify the layout, structure, and details of the document:

- LATEX vs. other word processors (e.g. Microsoft Word)
 - Microsoft Word/Power Point
 - WYSIWYG: What You See Is What You Get
 - You interact with a user interface to control the document layout while typing text
 - ▶ What is displayed on the screen resembles what will be printed
 - ▶ LATEX
 - ► You provide "LaTEX commands" to specify the layout, structure, and details of the document:
 - \command[optional parameter]{parameter}

- LATEX vs. other word processors (e.g. Microsoft Word)
 - Microsoft Word/Power Point
 - WYSIWYG: What You See Is What You Get
 - You interact with a user interface to control the document layout while typing text
 - ▶ What is displayed on the screen resembles what will be printed
 - ▶ LATEX
 - You provide "LaTEX commands" to specify the layout, structure, and details of the document:
 - \command[optional parameter]{parameter}
 - And typeset the document using the TEX engine and compile the output

► The input for LATEX is a plain text file (.tex)

- ► The input for LATEX is a plain text file (.tex)
 - ► You need a text editor!

- ► The input for LATEX is a plain text file (.tex)
 - ► You need a text editor!
- ► Numerous popular text editors

- ► The input for LATEX is a plain text file (.tex)
 - You need a text editor!
- Numerous popular text editors
 - Specific: Texmaker, TeXShop, TeXstudio, TeXworks...

- ► The input for LATEX is a plain text file (.tex)
 - You need a text editor!
- Numerous popular text editors
 - Specific: Texmaker, TeXShop, TeXstudio, TeXworks...
 - ► Generic: Emacs (Aquamacs), Vim, Sublime, Atom...

▶ All the above sound pretty complicated...

- ▶ All the above sound pretty complicated. . .
- Overleaf: https://www.overleaf.com/

- ▶ All the above sound pretty complicated. . .
- Overleaf: https://www.overleaf.com/
 - ► An online LATEX editor

- All the above sound pretty complicated...
- ► Overleaf: https://www.overleaf.com/
 - ► An online LATEX editor
 - ► Integrated PDF preview pane

- All the above sound pretty complicated...
- Dverleaf: https://www.overleaf.com/
 - ► An online LATEX editor
 - ► Integrated PDF preview pane
 - Quality of life features: auto-complete commands, auto-close brackets, keyboard shortcuts, etc.

- All the above sound pretty complicated...
- Overleaf: https://www.overleaf.com/
 - ► An online LATEX editor
 - Integrated PDF preview pane
 - Quality of life features: auto-complete commands, auto-close brackets, keyboard shortcuts, etc.
 - Numerous templates: journal articles, books, CVs, slides, posters, etc.

- All the above sound pretty complicated...
- Overleaf: https://www.overleaf.com/
 - ► An online LATEX editor
 - Integrated PDF preview pane
 - Quality of life features: auto-complete commands, auto-close brackets, keyboard shortcuts, etc.
 - Numerous templates: journal articles, books, CVs, slides, posters, etc.
 - Easy collaboration (But not free)

- ▶ All the above sound pretty complicated...
- Overleaf: https://www.overleaf.com/
 - ► An online LATEX editor
 - Integrated PDF preview pane
 - Quality of life features: auto-complete commands, auto-close brackets, keyboard shortcuts, etc.
 - Numerous templates: journal articles, books, CVs, slides, posters, etc.
 - Easy collaboration (But not free)
 - Integrated with Zotero and Mendeley for bibliography management

- All the above sound pretty complicated...
- Overleaf: https://www.overleaf.com/
 - ► An online LATEX editor
 - Integrated PDF preview pane
 - Quality of life features: auto-complete commands, auto-close brackets, keyboard shortcuts, etc.
 - Numerous templates: journal articles, books, CVs, slides, posters, etc.
 - Easy collaboration (But not free)
 - Integrated with Zotero and Mendeley for bibliography management
 - Integrated with Git for version control

▶ Before we dive in, useful resources

- ▶ Before we dive in, useful resources
 - ▶ The Not So Short Introduction to $\angle T_EX 2_{\varepsilon}$ (Oetiker et al., 2018)

- Before we dive in, useful resources
 - ▶ The Not So Short Introduction to LATEX 2ε (Oetiker et al., 2018)
 - ► Learn LaTEX in 139 pages / minutes

- Before we dive in, useful resources
 - ▶ The Not So Short Introduction to $\angle T_EX 2_{\varepsilon}$ (Oetiker et al., 2018)
 - ► Learn LaTEX in 139 pages / minutes
 - 'Overleaf' documentation

- Before we dive in, useful resources
 - ▶ The Not So Short Introduction to LATEX 2_{ε} (Oetiker et al., 2018)
 - ► Learn LaTeX in 139 pages / minutes
 - 'Overleaf' documentation
 - Contains intro to basic LaTeX, Overleaf, and many practical guides

- Before we dive in, useful resources
 - ▶ The Not So Short Introduction to $\angle T_EX 2_{\varepsilon}$ (Oetiker et al., 2018)
 - ► Learn LaTeX in 139 pages / minutes
 - 'Overleaf' documentation
 - Contains intro to basic LaTeX, Overleaf, and many practical guides
 - ► T_EX at StackExchange

- ▶ Before we dive in, useful resources
 - ▶ The Not So Short Introduction to LATEX 2_{ε} (Oetiker et al., 2018)
 - ► Learn LaTeX in 139 pages / minutes
 - 'Overleaf' documentation
 - Contains intro to basic LaTeX, Overleaf, and many practical guides
 - ► T_EX at StackExchange
 - General: Mathematics and Tables and TikZ

- Before we dive in, useful resources
 - ▶ The Not So Short Introduction to $\angle T_EX 2_{\varepsilon}$ (Oetiker et al., 2018)
 - ► Learn LaTeX in 139 pages / minutes
 - 'Overleaf' documentation
 - Contains intro to basic LaTeX, Overleaf, and many practical guides
 - ► T_EX at StackExchange
 - General: Mathematics and Tables and TikZ
 - ► Beamer Theme: here

- ▶ Before we dive in, useful resources
 - ▶ The Not So Short Introduction to LATEX 2_{ε} (Oetiker et al., 2018)
 - ► Learn LaTeX in 139 pages / minutes
 - 'Overleaf' documentation
 - Contains intro to basic LaTeX, Overleaf, and many practical guides
 - ► T_EX at StackExchange
 - General: Mathematics and Tables and TikZ
 - ► Beamer Theme: here
 - Bibliography: natbib, doi2bib, text2bib

- Before we dive in, useful resources
 - ▶ The Not So Short Introduction to $\angle T_EX 2_{\varepsilon}$ (Oetiker et al., 2018)
 - ► Learn LaTeX in 139 pages / minutes
 - 'Overleaf' documentation
 - Contains intro to basic LaTeX, Overleaf, and many practical guides
 - ► T_EX at StackExchange
 - General: Mathematics and Tables and TikZ
 - ► Beamer Theme: here
 - ► Bibliography: natbib, doi2bib, text2bib
 - ► Other: here

► Some useful templates:

- ► Some useful templates:
 - ► Thesis: here

- ► Some useful templates:
 - ► Thesis: here
 - ► Working paper: Chris's sample

- Some useful templates:
 - ► Thesis: here
 - ► Working paper: Chris's sample
 - Academic journal: here

- Some useful templates:
 - ► Thesis: here
 - ► Working paper: Chris's sample
 - Academic journal: here
 - Presentation slides (Beamer): here and here

- Some useful templates:
 - ► Thesis: here
 - ► Working paper: Chris's sample
 - Academic journal: here
 - Presentation slides (Beamer): here and here
 - Poster: here

- Some useful templates:
 - ► Thesis: here
 - ► Working paper: Chris's sample
 - ► Academic journal: here
 - Presentation slides (Beamer): here and here
 - Poster: here
 - CV: here and here

- Some useful templates:
 - ► Thesis: here
 - ► Working paper: Chris's sample
 - ► Academic journal: here
 - Presentation slides (Beamer): here and here
 - Poster: here
 - CV: here and here
 - Graphs, trees, diagrams (TikZ): here and here