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Fundamentals of Quantum Computing I

1 In Quantum Mechanics, objects no longer have a single
deterministic state like a classical object and are instead in a
superposition.

2 For example, uncertainty in position and uncertainty in
momentum are inversely proportional (Heisenberg
Uncertainty).

3 So instead of using a point in phase space to describe an
object, we use a state vector |ψ⟩, which can be thought of
as a linear combination of some basis states

4 However, for this presentation, we will be focusing on discrete
states which attain discrete values, such as the states of an
electron: spin up (|↑x⟩) or spin down (|↓x⟩).

5 Not only can we have states like |↑x⟩ and |↓x⟩ but also
1√
2
|↑x⟩+ 1√

2
|↓x⟩ , which might represent spin right (|↑z⟩).
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Fundamentals of Quantum Computing II
6 By the Born Rule (see later), this particle has a 0.5 probability

of being measured spin up and a 0.5 probability of being
measured spin down.

7 The Kronecker product ⊗ is used to glue two quantum states
together.

(a1 |↑⟩+ a2 |↓⟩)⊗ (b1 |↑⟩+ b2 |↓⟩) =

a1b1 |↑⟩ ⊗ |↑⟩+ a1b2 |↑⟩ ⊗ |↓⟩+ a2b1 |↓⟩ ⊗ |↑⟩+ a2b2 |↓⟩ ⊗ |↓⟩

This is also how we describe entangled pairs of particles:
1√
2
|↑⟩ ⊗ |↓⟩+ 1√

2
|↓⟩ ⊗ |↑⟩.

8 For convenience, we will omit the Kronecker product symbol
when writing it out, e.g.

|0⟩ ⊗ |0⟩ → |00⟩ .

But, do not forget that the Kronecker product is still there.
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How Quantum is Different

1 Say you have a mixture of quantum states:
50% spin right |↑x⟩, 50% spin up |↑y ⟩.

2 Classically, this is 1 bit of information.

3 However, you cannot make a measurement without skewing
the distribution away from 50-50! The least you can disturb it
is with a 45-degree axis, yielding only H(cos2 π8 ) ≈ 0.6 qubits.

4 Because of entanglement, we can also do funny stuff like send
2 classical bits in 1 qubit given a shared entangled bit
(superdense coding).
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The Born Rule and Dirac-von Neumann Axioms I

1 |ψ⟩ = c1 |a⟩+ c2 |b⟩+ . . . , c1, c2, · · · ∈ C
2 P(ψ is in state a) = |⟨a|ψ⟩|2

3 ⟨ψ|ψ⟩ = 1, ⟨a|b⟩ = 0. ⟨ψ| = c∗1 ⟨a|+ c∗2 ⟨b|+ . . .

4 Any observable can be represented as an operator (matrix) Â.
The expected value of Â is denoted ⟨Â⟩ = ⟨ψ| Â |ψ⟩.

1 Let |Ai ⟩ be a set of eigenvectors of Â. Assuming that the
eigenvectors are non-degenerate, we can get an orthonormal
basis that spans the space of quantum states (spectral
theorem).

2 If we express |ψ⟩ in this basis and interpret the eigenvalues ai
as the values for the observable, ⟨ψ|Â|ψ⟩ reduces to the usual
formula for expected value!
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The Born Rule and Dirac-von Neumann Axioms II

Â =
∑
i

ai |Ai ⟩ ⟨Ai |

|ψ⟩ =
∑
i

ci |Ai ⟩

Â |ψ⟩ =
∑
i

aici |Ai ⟩ Â |Ai ⟩ = ai |Ai ⟩

⟨ψ|Â|ψ⟩ =
∑
i

aic
∗
i ci =

∑
i

aiPψ(|Ai ⟩) = ⟨Â⟩
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Mixture States and the Density Matrix

1 The density matrix is a more generalized way to write a
wavefunction that allows you to deal with mixture states.

2 ρ = |ψ⟩ ⟨ψ|, so the probability of measuring state a is ⟨a| ρ |a⟩.
ρ is an observable representing ‘how likely is ψ?’ and
⟨Â⟩ = tr(Âρ).

tr(Âρ) = tr

(∑
i

ai |Ai ⟩ ⟨Ai |

)∑
j ,k

cjc
∗
k |Aj⟩ ⟨Ak |


= tr

∑
i ,k

aicic
∗
k |Ai ⟩ ⟨Ak |

 =
∑
i

ai |ci |2 |Ai ⟩ ⟨Ai | = ⟨Â⟩.

3 If we want to represent a mixture state instead, that is a
distribution of possible states, we can just do
ρ =

∑
i pi |ψi ⟩ ⟨ψi |. We can’t use wavefunctions because

those can only handle superpositions, not mixtures! Think
about the expected value formulae.
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Von Neumann Entropy I

1

S = −tr(ρ ln ρ)

2 A projector is an operator such that Π2 = Π. For example,
Π = |x⟩ ⟨x |. If we sum the projectors for each basis vector in
an orthonormal basis, we get the identity. Projectors are
important because they represent the process of measuring
and collapsing a possibly mixed quantum state.

3 We can show that

S = min
{Π1,2,...}

[
−
∑
i

tr(Πiρ) ln(tr (Πiρ))

]

where the minimum is taken over all sets of projectors such
that

∑
i Πi = I and for each projector tr(Πi ) ≤ 1.

4 In other words, S is the absolute minimum amount of
uncertainty under the most efficient measurement we can
make, which happens to be in the orthonormal eigenbasis.
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Von Neumann Entropy II

Since ρ is a hermitian matrix (i.e. ρ† = ρ),

ρ =
∑
i

pi |ψi ⟩ ⟨ψi | =
∑
i

ηj |j⟩ ⟨j | ,

where |j⟩ are orthonormal eigenvectors with eigenvalues ηj .
Furthermore, by Born’s rule, the eigenbasis measurement is
optimal for distinguishing states. Since the probability of
measuring |j⟩ is ηj , it’s natural to set S = −

∑
j ηj log ηj . Also,

note that, for some unitary U and some real diagonal matrix D
and using the matrix logarithm,

−tr(ρ log ρ) = −tr(UDU†U logDU†)

= −tr(UD logDU†)

= −tr(D logD)

= −
∑
j

ηj log ηj = S .
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Schumacher Compression

Recall Shannon’s source coding theorem:

Theorem

(Source Coding Theorem) If we send n symbols drawn i.i.d. from
some R.V. X with entropy H(X ), then we can compress our
codewords so that we only need to send nH(X ) bits, which is
lossless as n → ∞.

We used Huffman coding to actually implement such a
compression, which achieves this rate for large n. We have a similar
theorem from Benjamin Schumacher:

Theorem

(Schumacher Compression Theorem) Given n qubits drawn from
some source ρ denoted as ρ⊗n, with von Neumann entropy S(ρ),
then we can compress the source down to nS(ρ) qubits, which is
lossless as n → ∞.
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An Example I

Let’s say that we want to send three qubits drawn from the
distribution with P(ψ = |↑z⟩) = P(ψ = |↑x⟩) = 0.5, where

|↑z⟩ = |0⟩ , |↑x⟩ =
1√
2
|0⟩+ 1√

2
|1⟩

in the basis |0⟩ , |1⟩ . We can calculate the density matrix of ρ to be

ρ =

[
3
4

1
4

1
4

1
4

]
=λ0′ |0′⟩ ⟨0′|+ λ1′ |1′⟩ ⟨1′|

=cos2
π

8

[
cos π8
sin π

8

] [
cos π8 sin π

8

]
+ sin2

π

8

[
sin π

8
− cos π8

] [
sin π

8 − cos π8
]
.

We see that S = H2(cos
2 π

8 ) ≈ 0.601, and 3S < 2, so we can
compress our 3 qubits into 2 qubits without losing too much
information.
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An Example II

The probability measuring |0′⟩ is cos2 π8 ≈ 0.854, and the
probability of measuring |1′⟩ is sin2 π8 ≈ 0.146, so if we measure
our three qubits in the |0′⟩ , |1′⟩ basis, we expect for them mostly
to be |0′⟩ . Specifically, the probability that our message is in the
set spanned by {|0′0′0′⟩ , |1′0′0′⟩ , |0′1′0′⟩ , |0′0′1′⟩} is
cos6 π8 + 3 sin2 π8 cos

4 π
8 ≈ 0.942.

This smaller set can be rotated to {|000⟩ , |010⟩ , |100⟩ , |110⟩}, and
we can measure the third qubit to collapse (project) our state onto
a smaller subspace. after discarding the third qubit, we have
compressed our three qubits into two. The person receiving the
two qubits can append |0⟩ and apply the inverse of the encoding
rotation to obtain their own density matrix ρ′. We can calculate
the average fidelity between ρ′ and ρ to be around 0.923, which
means that there is a 92.3% chance that ρ′ and ρ would be
measured identically, so this is a pretty good compression.
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The General Process

1 But wait! 92.3% is not good enough. We want lossless, not
lossy!

2 Turns out that as n → ∞ fidelity approaches 1. In general,
Schumacher compression involves projecting ρ into a “typical
subspace,” the subspace spanned by the most likely
eigenvectors.
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Typical Subspaces I

1 The law of large numbers dictates that as n → ∞ and for
i.i.d. Xi ,

− log p(X n) = − log
∏

p(Xi ) → H(X1,X2, . . . ,Xn)

= nH(X ),

where X n is a string of n i.i.d. random variables Xi . This is
the asymptotic equipartion property.

2 A typical subspace for some arbitrary δ is the space spanned
by

Tδ =

{
|xn⟩ :

∣∣∣∣−1

n
log pX n(xn)− H(X )

∣∣∣∣ < δ

}
where H(X ) = −

∑
x pX (x) log pX (x) = S and pX is our

eigenvalue decomposition for ρ =
∑

x pX (x) |x⟩ ⟨x | .
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Typical Subspaces II

3 The probability that our sequence ρ⊗n lies in this subspace is
tr(Πρ⊗n), where Π is the projector

∑
xn∈Tδ

|xn⟩ ⟨xn|.
4 In the limit of infinitely long sequences, all sequences lie in the

typical subspace:

lim
n→∞

tr(Πρ⊗n) = 1

.

5 However, the dimension of the subspace is bounded by
2n(S±δ). This is often significantly smaller than our full space,
which is of size 2n. In short, the subspace is small but the
probability that ρ⊗n lies in it approaches 1 asymptotically.
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So What?

1 Quantum Computing can be a very very powerful tool in
certain scenarios, e.g. Grover’s Algorithm, Shor’s Algorithm,
HHL Algorithm, allowing us to solve some very specific
problems faster than any classical computer could.

2 But, if we want to send qubits across distances, like from the
output of these algorithms, it would probably be very
expensive because we don’t want to disturb our very delicate
and complicated superposition state.

3 So, Schumacher compression provides a scheme that allows us
to (for large n) transmit our qubits at a better rate without
loss, which will save a lot of money.

4 We didn’t mention this, but there are also error correction
codes for qubits, which involves a “syndrome” measurement
to check if the qubit is in the correct subspace. There are also
theorems relating to channel theory and quantum information,
but they are pretty complicated.
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