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1 Rate Distortion Theory

1.1 Generalized Entropy and Capacity (01.13.2025)

e Source — Source + cost function b(z).

e Entropy H(X) — Generalized entropy H(X,§) = R(§) where § is the upper bound of
the distortion that I'm willing to tolerate.

e Channel — Channel + distance function d(z, y). This function represents how unhappy
we are with the distortion.

e Channel capacity C(Y|X) — generalized channel capacity C(Y|X,3) £ C(f), where
[ is the bound on the power available at the source.

More rigorous definition: Recall the Mutual Information /(X;Y"), and that C(Y'|X) =
maxy I(X;Y). We also can think of H(X) as the minimum of I(X;Y") over all channels that
effectively result in Y = X (that do not do anything). With generalized entropy this is
useful but with normal stuff, I(X;Y) = H(X) for all such trivial channels.

We have H(X,§) = R(6). First, we pick an arbitrary ¢, which is the acceptable distortion.
Specifically, we cannot tolerate an average distortion of more than 4. If our distortion function
is d(x,y), then our average distortion is

d= Exyy [d(ﬂ?, y)]

Now, we have to design the system so that our average distortion is less than J. So, we
consider the channels such that d < 4. Of these channels, we choose the one with minimum
I(X;Y), and we define this to be H(X,d) = R(J) (we try to compress our source as much
as possible given our tolerance for distortion §).

Channel Capacity: C(f) = C(Y|X, ). Choose an arbitrary 3, which is the average cost
greater than which we cannot tolerate. Letting

b= Ex[b(x)].

We only consider the sources for which b < 3, and we choose the one that maximizes mutual
information I(X;Y’). This value is C'(f) and analogous to normal channel capacity.

There is a generalized source coding theorem https://en.wikipedia.org/wiki/Ratel,
E2%,80%93distortion_theory \_(Y)_/".

Chat, what does R(¢) look like? It can be proven that it is decreasing and convex.


https://en.wikipedia.org/wiki/Rate%E2%80%93distortion_theory
https://en.wikipedia.org/wiki/Rate%E2%80%93distortion_theory
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Figure 1: R(J) decreases as more distortion being acceptable means we can get away with

sending less info. Instead of an x-intercept at 1 it’s at d,,4, or something. The y-intercept is
H(X).
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Figure 2: What does C(f) look like? Similar but not the same. Apparently it is concave
and increasing.

Binary source: 1 with probability p and 0 with probability 1 — p, where p < % Our claim
is that

R(é):{éﬂm—m §§Z<p~

We define our distortion function

dX,)Y)=XY = {O X_Y.
1 X#£Y
For each source-channel combination TODO: COPY OLD IMAGE WITH SOURCE AND
CHANNEL.
We have two numbers: I(X;Y) and Exy[d(X,Y)]. Ignore any channel that has a worse
distortion than 4. This lets you find R(dy) for all dp. But this is not fun, so we will be smart
about it.

Part 1: Claim: No matter what test channel we connect to the source when measuring
I(X;Y) and E[], you will find that

I(X:;Y) + H(Exy[d(X,Y)]) = H(p).



Since 0 < d < 1 we can pretend it’s a random variable. We have

(
= H(p) - H(XY)
=Hp) —HXaY|Y)
> H(p)-HX a&Y)
= H(p) — H(Exy[d(X,Y)]),

1.2 More R(5) (01.15.2025)

Binary Source Review: We want to prove that

R(é):{éﬂm—m §§Z<p~

Part 1: From Monday we have
I(X;Y) + H(Exy|d(X,Y)]) > H(p).

Now we only consider the channels that yield an expected distortion d = Exy[d(X,Y)] <
9, where § <  because H (p) is monotonic until 3. (If § > 1 then what? ...) Because

I(X;Y) > H(p) — H(0),

the minimum of I(X;Y'), which is R(4), must also be greater than H(p) — H(J). But, we
need to prove that this minimum value is actually achieved.

Part 2: Claim: Aslong as ¢ < p, then there must exist a channel (which we can construct)
with the following properties:

1. This channel has an expected distortion of exactly o

2. This channel has has a mutual information of exactly H(p) — H(9).
1-9¢

1 1
1-9 Considering a source with probability p of outputting 0, along with a

mystery channel. We compose this channel with a BSC with probability 6.
Source — X — Mystery Channel — Y — BSCs — Z
(This part is weird) We want Z = X, so that

P(Z=0)=p,P(Z=1)=1—p.
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If this is possible, then (apparently) we will have solved our problem, i.e. R(d) = H(p)—H(9).
The expected distortion will be exactly d. But, the proof doesn’t matter.
Example 2: Consider the source such that

1
P X =2)=-
(X=2)=1
for z € {—1,0,1}, and let the output be y € {—1,1}.
We have the distortion matrix
1 2
11
2 1
Guess that
a l—«
PY|X) = 0.5 0.5 |,
11—« e}

based off the distortion function. We have

I(X;Y)=HY) - HY|X)=1— @H(a) + %H(Oﬁ)) - g - ;H(a).

Next, we want d. We just overlay the distortion matrix on top of the P(Y|X) matrix,
multiplying elements and adding them together and dividing by 3. This is because d =

>op(z,y)d(x,y) and p(z,y) = p(z)p(y|lr) = 3p(yle). This is just

2

Q.

W | Ut
[GSI N )

Now, we minimize I(X;Y’) such that d < §. This means that

5—30

“="a

Since 0 < a < %, we must have

1<6<

Q| W~

Gaussian Source Consider a source that is distributed as a guassian with mean 0 and
variance o2. We claim that

%log%2 0<§<o?
0 § > o?

R(6) = H(X,6) = {

where the distortion function is mean-squared error:

d(z,y) = (z —y)*.



We have
I(X;Y)=h(X)—h(X]Y)= %log(Qﬂeaz) — h(X]Y)

= %10g(2ﬂ'60’2) —h(X -Y)[Y)

1
> B log(2mea®) — h(X —Y)

> %10g(27‘(‘€0‘2) ~h(N(0.E[(X ~Y)?]))

= %log(27r602) — %log (2meE [(X —Y)?]),

since normal distribution has max entropy we can replace X —Y with a gaussian of the same
variance, and here we assume that F[X] = E[Y] = 0. Thus,

2
log 7

R(5) > 2

N —

1.3 More Gaussian Sources and Capacity Cost (1.17.2025)

1=p Our cost function is

0 z=0
1 z=1

. We limit the sources to those with average cost 3, and we want to maximize I(X;Y"). We
claim that

Capacity Cost Functions

VA
N | Q
IA
[

0
1 — H(p) 5

Assume X is a binary source with

(8 = {H[u ~8)(1 =) + pl ~ H(p)

]__
X:{O Ps
1 ps

I(X;Y)=H(Y)-HY|X)=H((1-ps)(1—p)+psp) — H(p).

Since the average cost b = p,, so if b < 3, then we just need p, < 3. Since H(p) is maximized
at p = 1, we want to get (1 —p,)(1 —p) +psp = 3.
If g > %, we can just set p, = %, and this is the maximum. If § < %, we can set p, = [3.

We have
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Example Let X : {0,3,1} and Y : {0,1}. Our transition matrix is

O NI =
—- O

Our cost function is b(0) = b(1) = 1,b(3) = 0. First we find the mutual information, guessing
that the distribution of X is
(0,1 —2a,0a).

I(X:Y)=H(Y) - HY|X)=1—1(1 — 2a) = 2a.

Our average cost is )
b=2a=1I1(X;Y),

so C(B) = 5.

2

Gaussian Channel Consider a gaussian channel that adds Z ~ N(0,02) to X to output
Y, with a cost function of b(z) = x2. We have

Assuming that a source has a variance o2. Since the source and noise are independent,
Var[Y] = Var[X] + Var[Z] = o2 + 0.

So, the maximum entropy of Y must be

1
5 10g(27re(0§ + 02)),



and so ) .
I(X;Y) < 5 log(2me(o? + %)) — 5 log(2mea?).

If ux = 0, we have E[X?] = ¢2 and Var[X] = 02, so

C(B) = Log (1 + ﬁ) |

2
2 o

1.3.1 Homework questions
1. 01
o= ]
with a binary source X such that p, = 1. What is R(6)?

2. Let

solo) = |5 2 0],

with b(0) = 0 and b(1) = 1. What is C(8)?

1.4 Generalized Shannon Theorem (1.22.2025)

Homework 2 Let

Pln) =y o,

q p ﬂ
with 6(0) = 0 and b(1) = 1. What is C(3)?
Let P(X =0)=aand P(X =1)=1—a.

[(X:Y)=H(Y) - HY|X)
= H(aq,p, (1 —a)q) — H(q)

1
= oquoga—q + (1 —a)qlog

1
log — — H
T ag TPl2 (9)

=qH(a).

Or you could save yourself 20 minutes and solve it using I(X;Y) = H(X)—H(X|Y), exercise
left for the reader.
We also have

so if b < B3, we just want to maximize
qH ()

subject to (1 —a) < 8. If 5 > %, then let a = %, with C'(B) = qH(%) =q.

If p < %, let « =3, s0 C(B) =qH(p).



Homework 1 (This solution isn’t correct but correct enough)

0 1
p=la )
with a binary source X such that p, = 1. What is R(6)?

Let
@ 1—q
= .
p(yl) Lh 1_%]

We have

105Y) = 1) - 11v1X) = 1 (P52 - (Gt + 3H(w).

We also have )
d = 5(1 —q1) + G-

By Jensen, H(231%2) > 1 H(q,) + 1H(gs). We want to minimize the gap between these two
guys, which only occurs when ¢; = ¢o, in which case

a= 500 +a)
If o6 > %, then we can find a scenario with ¢; = ¢o, in which case we have a Generalized
Entropy of zero.
But if § < %, what do we do? If we set ¢; = 0, we have d = % + @2, but this is always
more than § :(
If we set ¢o = 0, we have

-1
d=—(1-
2( QI)7

so if d < 8, we have

(Basically we are shoving ¢o to the left in order to minimize the Jensen gap, although this
logic is faulty.)
We get
1-29 1
I(X;Y)=H|—— ) — -H(1—20).
2 2
It turns out that depending on ¢§, we have to make ¢ a little more than zero to get the
truly optimal solution.

General form of Shannon’s Theorem Given a source p(x) along with symbol costs
b(x), and given a channel p(y|z) along with distortion function d(zx,y), we must design an
encoder/decoder pair such that the probability of an error is zero.

Our average cost is b = Ex[b(X)] and our average distortion is d = Exy[d(X,Y)].
Remember that a lower d means better quality, so we have a trade-off between cost and
quality.

10



Generalized Shannon’s Theorem: If and only if R(§) < C(f), then there exists an
encoder/decoder pair that achieves the cost § and distortion J. R is decreasing and concave
up, while C is increasing and concave down.

Graphical Intuition We can graph the possible pairs of § and 5 depending on whether
or not H,,ur < Conaz-

If Hyar < Cinaz, then at = 0 we intercept at dgpee (assuming C(/3) is not 0 or something
I guess). At § = 0 we are at whatever [ yields H,,,,, which will be slightly less than Syee-

If H oz > Choaz, then we still intercept at dgpe.. However, we cannot reach § = 0. Instead,
we reach Srn.. when ¢ is somewhere and we stay above it.

Example

1.

0
p(ylr) = 0
1

S O =
o = O

We have b(0) = b(1) = 1, and b(2) = 4. We have P(X =) = o; for i = 0,1,2. Find
C(B)-

01 &
_ 1
D= [1 0 }
p» = {3,1}. Find R(9).
Solution
1. We have

I(X;Y) = H(X) = H(X|Y) = H(X),
because Y = X. We want to find maximum value of H(X) with b < (. By symmetry,
ap=0a1:=a,80 ap =1—2a,s0b=2a+4—8a=4—6a <, and

-5

a >

6
If % < %, we can set o = %, to maximize H(X) = log3. This is when § > 2.
<

wl— D

If %58 > L since H(X) is monotonic on } < o < &, we can let o = min(*32, 1), and

this occurs when 0 < § < 2.

N =

2 Gambling

2.1 Gambling (01.24.25)

Connections between Gambling and Information theory:

1. Duality in growth rate of investment and entropy rate

2. The value of side information

11



Horse Racing These ideas can be extended to the stock market (you can make a lot of
money so pay attention). Let there be n horses in a race, such that the ith horse wins with
a probability of p;, and you win o; in exchange for a $1 bet given that horse ¢ wins.

Terminology: we say “a for 17 if you bet $1 ahead of time and win $a if you win, while
we say “b to 1”7 if you don’t technically bet anything ahead of time, but you win $b at the
end if you win but have to pay out $1 if you lose.

We make the assumption that we distribute our betting money across all the horses,
and we let b; to be the fraction of our money invested on the ith horse, where b; > 0 and
>; bi = 1. After the race, you get b;o; of your buy-in if the ith horse wins.

Let the winnings at the end of the race be a random variable, and we wish to maximize
the expected value of this variable.

We will repeatedly gamble with a possibly different strategy each time. If we repeatedly
gamble, the wealth is the product of our gains, where each gain contributes a factor of b;0;.
Let X1, X5, X3, ... be the outcomes of each race, so they are iid. Define the “wealth relative”
function to be

S(X) = b(X)o(X),

which is the factor by which our wealth grows. We define S,, to be the gambler’s wealth

after n races, so
n

S, =[] 5(x3).

We define the doubling rate of a race to be

W(b,p) = Ellog, S(X)] =Y _ pilog, (brox)-

k=1

What does this mean? Why is this a doubling rate? We will work backwards.

Theorem. Let the race outcomes Xi, Xo,..., X, be ii.d. according to some distribution
p(z). Assume the gambler is using a betting strategy b, where b is a vector of distributions.
Then the wealth grows exponentially according to

E[S,] ~ 2"V (0P,

Since the X; are i.i.d., so are the log S(X;). We calculate the doubling rate after playing

the game n times:

log, S, 1
Wn)=—2= =~ D log S(X;).
By the weak law of large numbers, this will approach E[log S(X)]. This proves the dou-
bling law. By the monotonicity of 2*, we only have to maximize W to maximize S,,.
We want to find W*(p), which is the greatest doubling rate over all choices of b. Specifi-
cally,
W (p) = max W (b, p) = imbbagl > " pilogbio;.

12



We have

L(b) = Zpi log pio; + A (Z b; — 1) ;

oL Di
b b
Di
bz )
A
and since Y b; = 1, we have A = —1 and b} = p;. Notice how b; does not depend on o;!!!!

Thus, since
W= Zpi log b;0;,
we know that the optimal doubling rate is:
W= Zpi logo; — H(p).
where b* = p. How? Well,

W(bap) = sz‘ log b;o;

= sz‘ log (2 'pi0i>

pi
= Zpi log o; — H(p) — D(p|[b)
< pilogo; — H(p),

since KL divergence is nonnegative, with equality only when b; = p;.
What does it mean for something to have fair odds:

1
We let

ri = —,
0;

so r; what the bookie estimates the win probability to be. We have
W(b,p) = Zpi log b;o;

bs
= Zpilogr_i
= Zpilog% - sz‘ log%

= D(pl|r) — D(pl|b),

so the doubling rate is how much worse the bookie’s guess of the distribution is than yours.
If the odds are uniformly m for 1, then

W*(p) = logm — H(p),
W*(p) + H(p) = logm.

So, to make the doubling rate go up, we need the entropy to go down.

13



2.2 Side Information (1.28.2025)
2.2.1 Yesterday’s Homework

Recall that if the bookie assumes odds of r, our doubling rate is

W (b,p) = D(pl|r) — D(pl|b).
1 .
Z — =1 (Fair odds)
0;
S(X) =b(0) + b(X)o(X).
If odds are fair, then it doesn’t matter what b(0) is, you can just imagine as if you have
less money. So, bet proportional to p; with the amount of money left (1 — b(0)).
If odds are in your favor, »_ Ol < 1. Since it’s in your favor, you should bet everything
(b(0) = 0.) It doesn’t make any sense to save money. Now we do it more rigorously:

W(b,p) = Zpi log(bo + b;0;)
Z bo/Oz +b
(bo/Oz +b;  pi )
- sz 1
. Jo:

Z

= Zpi log p;o; + log K — D(p||r),

bo/o; + b;
P, ==
K

If we want to maximize W w.r.t. b;, we just want to maximize K and minimize D(p||r),
which occurs when by = 0.
What if we have bad odds, where Y~ &= > 1?7 We would guess that b(0) = 1, to maximize

K = b, (Z = — 1) + 1, but we don’t know about D(p||r), so we don’t know for sure.

What we can show is that proportional betting cannot work. We have > b; = 1, and we
can arrange the horses in decreasing b;0;, such that the last horse has the worst b;0;.
Consider a new portfolio where

W — b, lmOm

0;

where m is the last horse. Since b;0; > b,,,0,,, all the 0 are > 0. We then keep the remaining

money:

=1

14



Consider the return on this portfolio:

b0 b0 1
bjoi = (b — —— | o; " = bi0; + by O, ——1].
;0 ( o )0+Z o 0; + 0 (Zoi )

But, since Y - > 1, we must have that

bgOi > bzoz
So, our new portfolio is better. This means that we can invest some of it, while saving the
rest, and actually make a profit at the end.
2.2.2 Side Information

The gambler has some information relevant to the outcome of the race. What is the value
of this “side information?” We can measure this by measuring the increase in the doubling
rate given the side information.

Let the winning horse be X € {1,2,...,m} with probability p(X) and a return of o(X)
for $1. Our side information is y (for example, this could be previous race history). Define
b(x|y) to be the proportion of wealth bet on horse x given some side information y. We have
> b(xly) = 1, with b(z|y) > 0. We also have

—maXZp )log b(x)o(z).

W (X]Y) —mﬁzp z,y) log b(z|y)o().

AW = W*(X|Y) — W*(X).

Theorem: The increase in the doubling rate due to side information Y for a horse X is
AW = I(X;Y).
Just as before, W*(X|Y') is maximized at

b*(zly) = p(xly).

W (X|Y) —maxzpm y)log (b(aly)o(x))

b(z[y)
= Zp z,y)log (o(x)p(x|y))
—Zp )logo(x) — H(X|Y).
Without side information:
Z p(x)logo(z) — H(X).

AW = WHXY) = WH(X) = H(X) — HX|Y) =[1(X;Y)]

15



2.3 Finishing Gambling (1.30.2025)

Dependent Horse Racing and Entropy Assume there is a dependence among races,
and let the strategy for betting on each race depend on the results of the previous races,
specifically:

W (X X1, Xp—2, ..., X1).
Recall that

W (b,p) = D(pl|r) — D(p||b).
If the o; are uniform and fair such that » = (m,m,...) and b = p, we have D(p||r) =
logm — H(p) and D(p||b) = 0:

W*(p) + H(p) = log m,

WX X1, Xggy o, Xo) = logm — H (X Xg1, ..., X1).
Consider a different perspective where S,, = I15(Xj;), so that

Ellog S, ZElogs Z(logm H(Xp| Xyt ... X1)).

1
—Ellog S,) + —H(X1, Xs, ..., X,) = logm.
n

We call %E[log Syp] the doubling rate and %H(Xl,Xg, ..., X,) the entropy rate. In effect,
this is a conservation law just like we saw before: making more money means entropy must
be lower (we know more about the R.V.).

3 Thermodynamics

3.1 Dynamical Systems (02.07.2025)

First-order Nonlinear System: Lotka-Volterra system: predator-prey system For example,
this can represent the change in population between foxes and rabbits, so as there are more
foxes, rabbits will be eaten, but then there are less rabbits so foxes will run out of food and
start to die of starvation. But, now that there are less foxes, more rabbits will survive, which
gives more food to to foxes and increases fox population, etc.

Prey is  and Predators is y :

dx
dt dt

The Sxy term means that the number of prey decreases as both the number of predator and
prey increase.

Note that they will loop forever (assuming that this system is efficient), and there is an
equilibrium point.

The solutions are level curves, so on the level curve,

Viz,y) =c

= ar — fry = z(a — Py) Y = by — vy = y(6z — 7).
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ih::hﬁ“x %H\a
o/
e o

=

Guess the gradient of V' :

Also, we have that

][5

N oxy — Y-
These two vectors are orthogonal because the phase plot arrows are perpendicular to the
gradient (i.e. the phase plot arrows are parallel to the level curve). Alternatively, use

multivariable chain rule on V' (z,y) = c.
How do we guess the gradient? Note that

@__53:—7%
de  By—ax

So,

_ Sx —
by —a dy + T e = 0.
Y x
Integrating this, we have

V(z,y) =dr —vyInx+ fy —alny = c.

Remember that in the neighborhood of a point, every (differentiable) curve is linear; this
is calculus. We will look near the stable points because that tells us the behavior near sinks
and sources.

So, we will linearize our non-linear system. Just like finding the tangent line at a point on
a curve, we can find the tangent plane of a function of two variables. So, even if a function
is nonlinear, we can make it look linear in a small neighborhood of (zg, ), which are the
stable points, where % = % = 0.
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Back to Lotka-Volterra, we have

&) -[% ).

We want to turn this into a linear function, so we find the infinitesimal difference with dz
and dy :
[w—ﬁ@o%wﬂwo%Mﬁ—w—BWqu:l?7]Fﬂ
—(v = (xo + dx))(yo + dy) + (v — 0x0)Yo 77 {dyl|”’
and doing the math (multivariable Taylor expansion I think), we get

[ a%(@ = BY)T| 0,0 3%(& = BY)leo.ug ]
%(_(’Y - &B)y”xo,yo a%(—(’Y - 5m)y)|xo7y0

This is the Jacobian matrix.

Example Let
T=x(3—1z—2y)

and
y=y2—-z—y).

First, we want to find the stable points, where + = 0, = 0. We see that the stable points
points are (0,0),(3,0),(0,2),(1,1). Consider (0,0) :

T i N

Since the matrix is diagonal, the eigenvalues are A = 3, 2. You can figure out what eigenvalues
are if you don’t know, just watch the 3b1lb video. I believe in you.

Since the eigenvalues are positive, if you place a marble near the stable point, the marble
will move away regardless of which direction you place it in.

Now, (1,1) :
-1 -2
]

so A = —1 + /2. Since one of them is positive and the other negative, we have a saddle
point, so along one eigenvector you go out, while along another eigenvector you go in. This
lets you draw trajectories near the saddle point without explicitly solving it.

3.2 Lorenz Systems, Chaos, Hamiltonian Systems (2025.02.19)

Remember: We are trying to connect information theory to thermodynamics (dynamics is
diff eq.).
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Example
T =x(3—2x—2y)
y=y2—-z—y)

First, we want to find equilibrium points, where the derivatives are zero, which only happens
at (0,0),(0,2), and (3/2,0). Our Jacobian matrix is

J— g—i §—§ 3 —4x -2y —2x
- % g—z N —y 2—z—2y|°

3 0
0 2|’
-1 0 . . 3
, which is stable with A = —1,-2. (3,0) —

Plug in our stable points: (0,0) — [ which is unstable with A = 3,2. (0,2) —

-2 -2 0o 1

A= -3,1

’ 9"

-3 _3} , which is a saddle with

|

Figure 3: Example 1 (from the page before, not the Lorenz System below)

Lorenz System For first and second order systems, the particle’s motion is not chaotic
(https://en.wikipedia.org/wiki/Poincar?,C3%A9%E2%80%93Bendixson_theorem). You
can predict the particle’s behavior: blow up to infinity, go in a loop, go in a limit cycle
to approach a cycle, or approach a point. But, in higher order systems, things go crazy
sometimes, i.e. the Lorenz system.

dx

Ez—am%—ay
dy

— =pr—Yy— Tz
dt P Y

d
ﬁz—ﬂquxy.

Long term behavior of Lorenz system: two strange attractors why is it strange?
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1. Strange geometric properties

2. Strange mixing properties

Figure 4: Lorenz Attractor

What are these strange geometric properties? Well it turns out that its (Hausdorff)
dimension is a non-integer number: specifically around 2.06. More generally, fractals have
non-integer dimension, such as the Cantor set or the Koch snowflake. A shape is said to have
dimension d if its ‘mass’ (area, volume, etc) increases by 2¢ after scaling up a side length by
a factor of 2.

What does it mean to have strange mixing properties? Well, if you start two marbles
arbitrarily clos to each other, then after rolling around for long enough, the marbles will be
significantly far away.

The Lorenz equations were intended to simulate atmosphere conditions, and he ob-
servered this chaotic behavior through simulations.

Hamiltonian Systems Hopping into physics,

1.
p=mu
P1 U1
P2 =M | V2
DP3 U3
. Di .
P = — e {1,2,3}.
x - ie{ }
2. 4
p
F=—
dt
Fl d D1
Fy| = T |72
Fy P3
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E=K+U,
where E is total energy, K is kinetic energy, U is potential energy.

1 1 2 2 2 2 2 2
mi 7= om | (B) 4 (B) 4 (B) i s
2 2 m m m m

Typically,
U= V(xh X2, l’g),

for some function V.

p?+p2+p3
s

4. Total Energy = H(x17$27$37p1ap27p3) = V(x1,$2,.’l}'3) +

3.3 More stuff (2.21.2025)

Remember the Lorenz System, specifically the strange mixing properties, where a small
difference in the initial conditions leads to a large difference in the outputs.

Pl +p3+p3

H($1,$2,$3;p1;p27p3) = V($1,$2,$3) + o =U+ K.
dK d 1 1 d 9 .
_— — = — = F = = —
dp amv2 om dv L p vu
H H
T 0 ) ——8 i€ {1,2,3},

- apz ) pi = al’i’
Seehttps://en.wikipedia.org/wiki/Hamiltonian_mechanics#From_Euler’E2}80%93Lagrange_
equation_to_Hamilton’s_equations
We have that energy is conserved:

OH  OH. _OHOH OH ( OH\
Oz op~  Ox Op  Op -

using multivariable chain rule.

Any (closed) physical system can be written as a Hamiltonian System.

If the system has only one particle, then the dynamics of the system are of order 6
(21, T2, x3, P1, D2, P3), o this particle is in 6-dimensional space. 2 particles live in 12 dimen-
sional space, 3 in 18, etc. N particles are governed by 6n—order (dimensional) dynamics. In
thermodynamics, this kind of thing happens when modeling air in a room, water in a pipe,
a rubber band stretching and contracting, with

N ~ 10% to 10%.

How do we visualize a thermodynamic system? Just imagine 10?® dimensional space!
Obviously that is difficult, but since H is conserved, the path of a marble (particle) in phase
space is a closed loop (actually a closed 6n — 1 hypersurface). If we put two marbles on this
configuration-space loop (hypersurface) arbitrarily close to each other, their true trajectories
are unknown, but MUST remain on the loop (hypersurface).
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https://en.wikipedia.org/wiki/Hamiltonian_mechanics#From_Euler%E2%80%93Lagrange_equation_to_Hamilton's_equations
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Since we don’t know the actual position of a particle, we can just treat the particle like
a uniformly distributed probability distribution. Since the consequences of doing this seem
to match reality, this is a pretty decent assumption. This connects Shannon entropy H (X)
to thermodynamic entropy S.

So, how can I model the location of a marble after some time? As a uniform pdf on the
level hypersurface.

Add a differential hypersurface AH to some surface H. If a particle is between H and
H + AH, we assume that it will stay in that region over time. So in reality, we lied, it’s
actually a uniform pdf over the 6 N dimensional sandwich hypervolume. What does this
mean? well we let the differential volume between AH + H and H to be the same locally,
so that the surface area is not necessarily the same everywhere; if AH is bigger, the surface
area will be smaller to preserve volume. Under this measure, we define our pdf.

Thermodynamic Entropy S(U) is Entropy as a function of internal Energy. How do we
find S(U)? Well, draw the level hypersurface of

H(x17x27"'7p17p27"‘> = U7
and then draw the level hypersurface of
H(CC173727---,P1>P27---) = U+AU7

where AU is predetermined. Then consider the volume sandwiched between the two level
hypersurfaces. Now, split the sandwich into differential chunks of constant hypervolume
AV. The magnitude of the AV (volume not energy) determines the accuracy of the marble’s
position. The number of chunks is the ratio of the sandwich’s volume with AV
We define
S(U) := In(# of chunks),

which is just like how the entropy of a uniform (discrete) pdf of m items is log,(m), but
physicists use In because why not.

Properties of S(U) We don’t know the exact form of S(U), because it depends on the
specific dynamical system in a high dimension. Nevertheless, it has certain properties:

1. S(U) > 0 because there is at least one chunk.

2. S(U) is increasing with U, because the level hypersurface H(Z,p) = U has more hy-
persurface area as U increases.
3. S(U) is concave down because In is concave down.

As an example, as the radius of a circle increases, the change in area is

Ar)? — mr? A
w(r + Ar) mr %27T7’—T

AA AA

If % is constant, this is linear with r. Basically, it lowers the dimension by 1, so

S(U) ~logUN"' = (6N — 1)log U.
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4. S(U) =0 when U = 0. Just trust
5. S8"(U) = oo when U = 0. Also just trust

So, S kinda looks like /-

3.4 Legendre Transform (2.25.2025)

Review: Energy is conserved, so all particles together have a certain amount of energy,
and sometime later, they still must have the same energy and must still reside on the level
hypersurface H = U, which has dimension 6n — 1 embedded in 6n-space. Considering the
hypersurface H = U + AU, we have a differential hypervolume between these two level
surfaces. If a point begins between H = U and H = U + AU, it must stay there forever.
Since this dynamical system is chaotic (i.e. we can’t determine precisely how the system
is truly evolving in time), we can imagine that the time evolution of the phase point as a
uniform smeared distribution across the region between H = U and H = U + AU. We can
split the hypervolume into AV regions. We assume that AU and AV are given, so we can
count the number of chunks of size AV in the region between H = U and H = U + AUj; the
natural log of this number is entropy.

Another view of S(U) Remember that

H(l’l,l‘g,...,pl,pg,...)

is the Hamiltonian that qualifies our physical system. Remembering MVC, the gradient
of a level set is the direction and magnitude of the steepest increase, so if we consider an

individual pillar of volume,
AU

“height of pillar”

at each point, where the height of the pillar is loosely the ratio of the AV to the hypersurface
on top of where it resides. We are dividing a 6n volume by a 6n — 1 volume, so the height
is indeed 1 dimensional.

Specifically,

VH| =

AV
Abillar base
r AV
IVH| AU - Apase of pillar
Integrate both sides over the level surface H = U using the differential area of the
level surface do. We fix the location of every pillar ahead of time such that the

integrals below break up into many piecewise integrals (i.e. the integrand is not considering
continuously trying to place a pillar at every location as grant thought).

1 AV 1
/ —do = do.
level surface |VH | level surface AU Abase of pillar

height of a pillar =

Y
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Just for fun, take the log (remember what we are trying to do: redefine entropy):

| / 1 d | / AV 1 d | AV ) / 1
n pry o =11 o =11n--—: n _—
level surface ‘VH| level surface AU Abase of pillar AU level surface Abase of pillar

For every patch area, the integral

1
[ !
patch Abase of pillar

1 1
/ ——do = Z / ——do = Z 1 = # base patches.
1 patch

evel surface Abase of pillar patches Abase of pillar patches

Additionally,
AV

AU
is a constant that is fixed w.r.t U. This may appear to be nonsensical because it ﬁ—g isn’t

dimensionless, but we can just normalize by multiplying by a factor (I don’t buy this logic
but it’s fine). So,

1
ln/ —— do = In(# chunks) = S(U),
< ( )=5(U)
up to a constant.

Alternatively:

/ 1 d / height of pillar d AV / height of pillar
=y g = g =
|VH| AU AU AV

do,

and S(U) follows from taking natural log.
Something something Boltzmann’s constant.

Legendre Transform This is an important transformation in physics. Consider a function
y(x). To specify the curve of the function, we can specify a y coordinate corresponding to
every x coordinate.

In another view of the world, we could instead consider every slope of a tangent line
(m) and correspond it with some number 5 = f*(m) that is the (negative of the) first
y—intercept of the line that touches the function. Note, this only provides a lower envelope
of the function. Specifically: For every slope m, start with a line of slope m at the very
bottom of the cartesian plane. Move this line up until it first touches the curve, and call the
negative of the value of the y coordinate .

If I have y = f(x), can I find 5 = f*(m)? Yes:
£ (m) = maxfma - f(z)].

For every m, we draw a line through the origin with that slope, and then we bring it down
by the biggest gap between ma and f(z), and the distance you pull it down is exactly the
negative y-intercept 5. Try to see why this is the same as our previous definition. This only
works for convex functions btw, for pretty straightforward reasons (try to do this on —z?
and see what happens).

24
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Example

f(z) = ca®.
For every m, we have f'(z) = 2cx =m, so x = 2* and ca? = ’Z—j. So,
2 2 2
m*  m m
*m)=mzr —cx? = — — — = —.
frm) 2c 4c 4c

3.5 Legendre Transform 2 Electric Boogaloo (2.27.2025)

Remember the Legendre Transform:

y=flx) = B=[f"(m),

where f*(m) is the negative y-intercept of the lowest line that touches the curve. This is
also
max|[mzx — f(z)].
x

Example 1
flx) = e
We have
f*(m) = max[maz — €],

so m = e*, or x = Inm. Plugging this in,

f*(m) =mlnm —m.

Example 2
f*(m) = max[mz — xInz],

som =Inx + 1, or that z = ¢™!. Plugging this in,

fr(m)=me™ ! —e™t(m—1) ="

Example 3
flz) =

2 2<x<3
oo o/w '

m2

For 4 < m < 6, this is the same as the Legendre Transform of 22, for which f*(m) = %-.

When m < 4, the line will go through (2,4), so

4+5
— =

m,

or
b =2m — 4.
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For m > 6, the line will go through (3,9), so

9+08
=

m,

or

So

2m —4 m <4
frm)=¢m 4<m<6

3Im—9 m>6

Properties of Legendre Transform Assume that the curve is convex.

fe—tt— fr

Ly =S
2. (F) = (f)!
Compactly,
Lem Lo @)+ 7 m) =

Because f is convex,

fr(m) = max mi — f(x)

m=[f(z), x=[f]"(m)
fr(m) =m[f(m) = fo[f](m)
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2-D Legendre Transform Let y = f(z1,22) be a convex surface in R®. There are three
different ways we could define the Legendre Transform

1. Pin down x5 to get a 1-D function y = f,,(z1), after which you can take the 1-D
Legendre Transform 8 = f7 (m,), which can be extended to a function of m; and x, :

/8 = f*(m17 x?)-
2. Pin down x1, so that y = f,, (z2), and similarly get
B = f(x1,my).

3. Take the true 2-D Legendre Transform. Just like our tangent line, we can take a plane
at negative infinity (instead of a line) of slope (my, msy), and bring it up until it touches
our surface. Then, we assign  to be the negative of the y-intercept. Specifically,

B = max[myx + moxy — f(x1,22)].
T1,T2

Using vector notation, where
y=[f(2):
B = £ (1) = maxlii - 7 — ().

Example 4
y =227 + 23 + 4.

First method: Consider

Yo (T2).
We have
fr(my, xe) = Hﬁx[mlxl — 223 — x5 — 4],
SO
aixl(mlxl — 227 — 25 —4) = my — 41, = 0,
so x1 = 7t Plugging that back in,

m2

f*(ml,xg) = ?1 — QZ% — 4.

Second method:
f(x1,me) = max|maoxs — 293% + $§ + 4],
xr2

SO

——(moxy — 223 — x5 — 4) = my + 225 = 0,

(9302

2
. m
fH(xq,mg) = -2 _ Qxf — 4.

4
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OK so [ don’t know what happened here because I can’t figure out what the original problem
is from what I wrote. Sorry, I made a lot of mistakes because class was ending, but I think
you get it. Third method:

7(07) = malit - 7 — f(7)

so this is a stationary point w.r.t. ' :

solving for m; and mg,

3.6 Finishing Legendre Transform 3.3.2027

2-D Legendre transform Let a paragraph have a position x and p travelling in one
dimension but existing in 2 — d phase space.

p2

H =T+V=—+V(x).
(2.p) =T+V = 2 4+ V(z)
Take the Legendre Transform of this, only with respect to p.
We have
Py
H,(p)=— )
) =L+ V)

Since we let m denote mass, we will let v denote slope (with no foreshadowing definitely...):

SO
p Lo,
L{H(z,p)} =vp — om V(z) = gmv = V(z).
This is called the Lagrangian of the particle.
Remember that S(U) is concave down (looks like y/z). But, physicists don’t like happi-
ness, so they want a convex function. Thus, we define U(S), where energy is a function of
entropy. This is helpful because convexity is nice for Legendre transforms.

Temperature We define

T(S) = d%U(S).

This clearly is temperature, so I don’t see why I should have to explain. Since U is increasing,
we have that T > 0 (in Kelvin). We said that S was a function of one variable, but this can
be expanded to S(U, Vi, Vs, ... ), which can be turned into U(S, Vi, Va,...) = U(S, V). Since
we are talking about gasses and fluids, we can let V' be volume. So,

T(S,V) = %U(S, V).
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We also have 5
D — — P
SLU(S.V) = P(S.V),

pressure as a function of entropy and volume.
First, let’s take the Legendre transform of U w.r.t. S.

0
= — :T
m aSU(S, V) (S, V),

so we have
-UX(T,V) = —mngS - U(S,V) = iréfU(S, V)-TS.

It turns out that —U*(T, V') is known as the Helmholtz Free Energy.
What about the Legendre transform w.r.t V7 Do the same thing, now we have

—-U*(S,P) = max U(S,V)— PV,

which is called Enthalpy.
If we take the Legendre Transform w.r.t both, we get Gibbs Free Energy from Chemistry.
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PG| T

Figure 5: The Thermodynamic Square

How to read the square? We have
dU = —p(dV) + T(d9),
similarly
dH =V (dp) +T(dS).
Why? No idea.

Final Remarks Just for fun:
S(U,V,N),

where N is the number of moles of particles.

1 0S P_dS u _ 0S

T oU'T oV'T ON
We call & the chemical potential.
Laws of Thermodynamics.

1.
08 08 aS 1 P i
AS = —AU + —AV + —AN = =AU + =AV + =AN.

au=" T avtY T aN A T

We assume that AN = 0 in a closed system, so
AU P
AS=—+4+=A
S T + T v,

or

TAS = AU + PAV,AU =TAS — PAV.
If you remember that heat (@) is just T'AS, this might make more sense.

2. Consider an ideal monoatomic gas. Then

_3kN [2

5 2 13

1nV+an—§1nN }

Sorry, but that’s just how it is. We have

08 3N 1, 20U
ou 22U T 3k N’
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@g_%Nzﬁéfsz_kNT
oV 2 3V T v
SO
PV = kNT.

Sounds familiar? It’s just PV = nRT.

3. Second Law of Thermodynamics

A closed system is in equilibrium iff S is maximized. Let p be the density at every time,
and ¢ be the final equilibrium distribution, for which S is maximized: ¢ is uniform.
The second law tells you that

D(pllq) — 0.

3.7 Finish Thermodynamics (3.5.2025)

Examples

fx) = ||.
When |m| > 1, we have f*(m) = oo because we can lower the line forever low while it still
hits it. Otherwise, it hits it at the origin, so f*(m) = 0.

f(xlaxZ) = |x1’€x2'
Just like the previous problem,

0 |my| <e*

oo otherwise

fr(ma, z2) :{

We have
far (22) = |21]€™,

which is convex in x5, so

0
M2 = 8_$Q|5‘71’em2 = |z1]e™,
or that
m
To =In—,
|71
SO

For the third way, since this function is convex in z; and x5, we have

) = 7= (1

ma |x1|e™?

where

w@:{—lxgo

1 x>0,
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So,
m
T = —2,x2 = In(|m4]).
my

[*=mix — mox — |21]€"* = moIn(|m4]).

S = In(volume chunks).

S(U) is increasing, concave, derivative of infinity at zero. But also, S(U, V) or S(U,V, N),
but we can make it convex like U(S, V') or U(S,V, N).

_ou P _09S
S5 T av
We have (first law)
AU =TAS — PAV.

Second law: A system is in equilibrium when S is maximized.
Consider two chambers of gas separated by a wall. We can assume three possibilities:

e Rigid: Vi, V5 are constant
e Insulating: Uy, U, are constant
e Impermeable: N;, Ny are constant

First, assume that the wall is rigid and impermeable but non-insulating. Initial: S(Uy, Vi, Ny)+
S(Us, Vo, Ny) Final: S(U;, Vi, N1) + S(Us, Va, No). By conservation of energy,

Uy+Us=U; +U;.

The final state will maximize entropy, which we can solve with Lagrange multipliers: L£(U;,Us, \)
S(UF, Vi, Ny) + S(Usy, Vo, No) — NU; + Uy — Uf — Uy). Taking partials w.r.t Uf, U;,

oL 1 oL 1
= — —A=0 = — —A=0
our Ty Uy Ty ’

so they have the same temperature in equilibrium. We can try the same idea for insulating
rooms.

4 Statistics

4.1 Intro/Review to Stats 2025.03.11

Statistics is a probability ‘box’ run backwards. Usually, we run forward from a known prob-
ability model (normal distribution, poisson random variable) to compute data. In statistics,
we have the data and predict what’s in the box.

Observational vs. experimental studies: actively changing conditions. In experiments,
random assignment MUST be used to establish causation, but it is not present in obser-
vational studies.
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Let us consider an observational study on a random variable X, the flipping of a biased
coin with H, T probability p, 1—p. We do not know the value of p, which must be determined

by observing flips (the sample data of n tosses x1, z2, x3,...,x,). Let
. # of heads
b= n

be our estimate of p. Here, p itself is a random variable, with E[p| = p. We call p a statistic
because it is based on data, while we call p a parameter because it is the truth, based on
population. We can also compute error of the mean with

p(l—p).

Varf] =

This is derived from the variance of a binomial distribution, Var[X]| = np(1 — p), along with
the fact that Var[a - X| = a?*Var[X]. The distribution of p is a normal distribution (central
limit theorem?), which is completely determined by the mean and variance above.

Statistical significance is the surprise factor (like entropy). If the probability of something
happening (or of being more extreme) is small, then the result is more surprising/significan-
t/important. Sample size is important for significance.

The confidence interval asks how likely it is that the true value p falls within a given
interval around p. Consider an observed p = 0.31 with n = 5046. We can just say p ~ p
and make a normal distribution with g = p to compute the confidence interval. With the
standard deviation o, we compute the confidence interval:

p(1—p)

n

p = scale factor -
where the scale factor controls what confidence we want (95% confidence interval ~ 20. erf!).

Example 2 Assuming you observe 50 out of 600, what is the chance of seeing > 59 out
of 600 with a new sample? We use the normal distribution’s CDF. On TI-84, we have
normalcdf(lower bound, upper bound, p1, o) and invNorm(area to the left) = cdf *(...).

With o = 28, o = [ EUS0OMI0000) e ave 1 — cdf(50/600) ~[9.186% |

4.2 Experimental Studies (3.13.2025)

Recall that the 95% confidence interval of p is p & 1.961/ 22 So, 95% of the time, we can

1 —
b+ 1.964/ pl=p)
n
contains p.

There are three kinds of lies: lies, damned lies, and statistics:

—
pi1.96\/]¥
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contains p 95% of the time on average.
Assume that we have a normal distribution p centered at py with variance

po(1 — po)

—
We guess that py is the true probability /proportion (null hypothesis). If we measure p;, then
what is the chance that we measure something beyond p; from py? This area is the p-value.
If the p-value is small, then the result p; is significant, so py is wrong. If the p-value is not
small, then we don’t know.

For problems 3 and 4, our underlying variable continuous, so we use p instead of p.

We want to estimate the population mean p, which we don’t know. All we know are the
samples x1, 9, ..., T,, with a mean . We can’t find u, but we can get pretty close to it.
Our confidence interval is -

Vi’
where o is the population standard deviation. Why? The central limit theorem tells us
that z is distributed normally, with mean p and standard deviation (actually the standard

deviation of the mean) is \/iﬁ Just like before, we guess that o is the true mean (null

Tz 1£1.96

hypothesis), and measure z;, and define the p-value to be the area further away from z.
If the p-value is small enough, we assume that our measured value is significant. But, how
would we know o7 We don’t have the population standard deviation, so we estimate o based
on xi,..., T, to get s,. This is the sample standard deviation, which we can substitute in
for o to get our confidence interval:

S
7+ 1.96——.
T 96\/5

But since we use s, instead of o, it doesn’t follow a normal distribution but a ¢-distribution,

so we get
3.1‘

7

Tt

Basically, t* is slightly wider than 1.96.
Back to Exercise 3: = 26min Our 95% confidence interval is

1
26j:(L96)—£EL

V100’

and our 99% confidence interval is

26 + 2.581'—57.

v/ 100

Exercise 4:

i 7 —
P 477w =5 =P — | = 0.18.
(7 < 4770 =5) (Z<0hﬁ>
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4.3 2-Sample (3.17.2025)

When we have continuous data and we want to determine p, we use z, which is the average
of the x1, 9, ..., x,, and we have our sample standard deviation s,. Recall that

Var[X] = E[X?] - (E[X])” = 3_(X — w)’P(X = 2).

Note that to find T or o,, we assume that x; are uniform, but this isn’t exactly right:

sx:\/nilz(a:i—f)?

We call £ an unbiased estimate of u, which means that if we plot various =, we will get a
normal distribution centered around p, so Z is directly correlated to u. For this to be true,
we must use n — 1 in the denominator instead of n. Why? If we have z fixed, then the first
n — 1 z;’s determine x,,, so we only have n — 1 degrees of freedom (Bessel’s correction).

2-Sample When we have a 2-sample test, we want to compare two samples (no kidding),
but we have two parameters that we want to estimate, p; and ps. But, we can reduce this
to a one parameter situation. If p; is the proportion of teen drivers ignoring cell phone bans
before 2006 and p, is the proportion after the date, we only really care about p; — ps to see
if there is a difference between the data, making this a one-parameter test. If we consider
the difference p; — po, since p; and py are normally distributed and independently, we must
have that the difference is also normally distributed (https://en.wikipedia.org/wiki/
Sum_of _normally_distributed_random_variables). The mean of p; — py is p; — p2 and

p1(1—p1) + p2(1*p2)'
ni no

the standard deviation is o = \/
For two continuous distributions, we have our confidence interval

2 2
Z1 — Xy £ scale factory | =% + =22,
n na

Remember that s, has the n — 1.

4.4 Information Theory Finally (sorry next time) (3.19.2025)
4.4.1 Bivariate Data

Consider data (z;,y;), where x and y are discrete random variables, or x is discrete and y is
continuous, or z is continuous and y is discrete, or x and y are both continuous. If both are
continuous, then we can consider linear regression. If we have n data points, we can visualize
them with a scatterplot of the points z;, ;. We want to find the relationship between x and
y, and the easiest model to try is a linear model with the lowest rms error (vertical from
points to the line). We call y — ¢ the residuals. The line § = a + bx that we say is the best
model is the one that minimizes the sum of the square of the residuals. It turns out that the
line will go through the point (Z, 7). Consider the following:

1 1
2 Y 2 C2\2
SR R N R
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Rearranging,

1 T, — T 2_1 1 Yi— Y 2_1
n—lz( Se ) B n—lz( Sy ) -

We can define the correlation:

1 T —T Yi— Y
w2 () ()

It turns out that —1 < r < 1. If |r| =~ 0.8 or 0.9, then we say there’s a strong correlation,
but if it’s around 0.5, then there’s a weak correlation. Note that r doesn’t depend on which
variable we choose to be x or y, nor does it depend on the units of x or y. The value of r
corresponds to the strength of the linear relationship between x and y. If r is small, that
only means that the linear model is weak, NOT that there is no relationship between z and
y. We call r? the coefficient of determination. This is the proportion of the variation in y
that can be attributed to a linear relationship. If r = 0.75, then 56.25% of the variation in
y can be attributed to a linear relationship between y and x. Specifically, we can define the
measure of total variation to be

SST = (v — 1),

and
SSR =" (y; — 1)

is the measure of variation unexplained by the linear model. The ratio between these two

terms is 1 — r2 : A
2 2Wi—9)” SSR

> (yi —9)? SST’
only for the best fit line.

Note that, however, if we sample a data set multiple times, we might get a different
regression line every time. Instead of a model gazx + b, we can consider the random variable
y to be y = a + Bz + ¢, where ¢ is a random variable that represents the residuals. Every
time we sample the data, we will get a different value of € at each point, so it makes sense for
this to be a random variable. Furthermore, we can assume that € has a normal distribution
with zero mean and some o, standard deviation. We also assume that for any fixed value of
x, € is identically distributed, and so y is normally distributed with mean « + Sz and stdev
O-.

Inference We can infer things with either a confidence interval (statistic = confidence level
or scale factor x stdev of statistic). We are creating a sampling distribution of b, which is a
normal distribution with center 8 and standard deviation -Z==. We get b+ \/%, where ¢ is an

Vs
unknown estimate given our data set. To find o, we use the standard error of the residuals:
SSR
Se = .
n—2

Hypothesis Testing Given a guess [y, we construct a normal distribution around it and
check if by is in the confidence interval.
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4.5 Now We Are Doing Info Theory
4.5.1 Observational Studies

Remember what this is: we aren’t comparing an input to an output but instead observing
the data directly, such as compiling data from a survey. Given a source ) and (list of)
observation(s) #, we want to define some notion of how ridiculous # is to come from Q. It’s
not good enough to use Probg () as a metric. For example, a biased coin with p = 0.7. If
we toss it a thousand times, we expect around 700 heads and 300 tails. But, the chance of
getting a specific 7 is really low, so this isn’t a good metric.

Instead, we want Probg(Z and its entire tail). For every Z, define

Sz = {Z'|Probg (&) < Probg(Z)}.

We call Z too ridiculous if Probg(Sz) is small.
Given an Z, find all the () that might have produced it. We define the Confidence Region
to be the set
{Q|Z is not ridiculous to have come from Q}.

4.5.2 Hypothesis Testing

Given a @ that Mr. Null guesses, we find all the & that will allow you to disprove @ (would
be too ridiculous). We define the rejection region to be

{Z|Z is too ridiculous to have come from @}

Now we will define Py (Z). We can construct a bar graph that relates possible values &; to
an N; that represents the number of times that & occurs in Z, such that >, N; = N, which
is the size of 7.

— - N; lo 1 —N | Pz(&) lo i -
Py(Z) = HPQ(:CZ-) = HPQ(gi)Ni =9 {Zl gPQ@] —9 [ (&) gPQ@Z)} _ o—NID(P:||Q)+H(Ps)]

The numerator term is N times cross-entropy if you know that.

We have
1 | 1
— O —
N % Py (@)
is basically our average surprise per observation.
Now, we want to find the probability

Po(Sz).

We can’t find this directly but we can bound it, which we need the Pythagorean Inequality
for.

Consider a convex set S of distributions, meaning that any convex combination of
distributions in S is also in S. For example, if the distributions P, = 400H /6507 and
P, = 450H /5507 are both in S, then a combination

PP+ (1=p)P,
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is also in S, where 0 < p < 1. https://en.wikipedia.org/wiki/Convex_combination.

If S is ridiculous, then @ is outside P. If P* is closest to @) (under the K.L. “metric”,
which is not symmetric!), which would be on the boundary of S we have the Pythagorean
Inequality (beware that this is backwards from the triangle inequality):

D(P||Q) = D(P||P*) + D(P"[|Q).

Proof of Pythagorean Inequality Consider some P, in S such that
Py = AP+ (1 - \)P7,

with 0 < A < 1. In the path P* <» P, we have that D(P*||Q) is a minimum of D(P,||Q)
by construction. We get that the derivative of D(Py||Q) w.r.t A is non-negative at A = 0.
Why? We don’t know for sure if D(P,||Q) is decreasing throughout the entire path, but for
sure when we begin leaving the minimum near A\ = 0, we must have D(P,||Q) is increasing,
because otherwise some other point must be the minimum (violating our definition of P*).

D(R\|Q) = Zleog
dD B N Py %
- AZO_Z [(P—P )1og§+(P—P )}

= Z(P—P*)log%+0
—ZPlog ZP*log
_Zplog {P P*} ZP*log_

= D(P||Q) — D(P||P*) = D(P*(|Q) > 0

SO

D(P[|Q) = D(P||P*) + D(P"[|Q).

This might make some intuitive sense because you can consider the triangle connecting
P, P*, () which must be obtuse because our set is convex. So, we might expect something
like
(PP*)* + (P*Q)* < (PQ),

which is similar to what we have.

4.6 Information Theory (Observational Studies).

— Z Py(i) = Z 9—NID(P||Q)+H (Pz)]

res res

Remember that
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By Pythagoras:

Py(S) < Z 9—N[D(Pz||[P*)+D(P*||Q)+H (Pz)]
zes

— 9~ ND(P*||Q) Z 9—N[D(Pg||P*)+H(Pz)]

— 9 NP P ().
And, since probabilities are < 1, we have

Po(S) < 27 NPEIQ),

Some Handy Formulas KL Divergence between two bernoulli distributions:

D(Bernoulli(py)||Bernoulli(ps)) = p1 log E—i-(l—pl) log
D2

Remember that

2
In(l+¢)~e——,
2
and we can assume that p; is close to ps :
L (p— p2)2

~ 2m2 ()1 — p1)

apparently.

(I-p) 1
(I—pg) 1In2

1

plln&—i-(l—pl)lnl

D2

Apparently, you can do the same thing for two Gaussians (using integrals instead of

sums), you get
D[N (p1, 01)[|N (12, 2)],

and if o1 = 09 = 0, then

1 (Ml - M2)2

D =~
2In2 o2

If 3 = po, D =0, so this is reasonable.

Observational Study for Proportions Remember that our confidence interval is

p(1—p)
—.

ptC

Assume that we observe ¥ = z1,xs,...,xy from a Bernoulli(p), which is our @), making it
a binomial distribution since we repeat it N times. If 7 is too ridiculous to have come from

@, then
Py(Sz) < 27 VPR < ¢

for some small €. It turns out that our P* is Binomial(p). This is the closest distribution in

S(Z) to Q.
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We can calculate
1 (p-p)?

9—ND(P*[|Q) oy Q_N{m ﬁ(l—ﬁ)} <e,

SO 1 (A )2 1
p—p
21n 2 m%p>:>bg2’
SO (A )2 1
p—p
p(l—ﬁ) >In 2’
SO

b — |
bt T

our scaling factor. So, our confidence interval is an p such that

m—p|§0
5(1-p)
N

In other words, p £ Cy/ ’W contains p. If ¢ = 0.05 (95% confidence interval), we get
C =~ 2.45, which is a wider interval that our 1.96 scale factor interval, but not that bad.
We can do the exact same thing with normal distributions, where @ ~ N(u, o) creates

observed 1, T, ..., 2y, so that
P* ~ N(z,s;).

Repeating the same idea, we get the confidence interval to be the set of y such that

1T — p <c

s:/VN ~

Sa

VN

4.7 idk what we are doing today (3.27.2025)
4.7.1 Observational Studies

or

rxC

Remember last time we were trying to tie in 2-VPU"IIQ) with formulas. We defined that the
confidence interval is

lp — pl <C

Pl—F/— =
p(1—p)
V N

For our hypothesis testing, our rejection region given a p is the set

| D —pl
x—
/5(=p)

N
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Similarly for means (continuous): Confidence interval given 7"

{um;MSC},
Vi

{f“";“>c}.
U

Example Assume we have a thousand coin tosses, with a true distribution of P, = P, =
0.5. We want to find the probability of seeing more than 700 heads or more than 700 tails if
I toss the coin a thousand times. We can find D(P*||Q), where p = 0.7, so

Rejection interval given u:

0.7 0.3
D(P*||Q) = 0.7log —— + 0.31log —— ~ 0.1187.
(P*|Q) og 5 +0.3log —

So, we have
P(S) = 9—1000(0.1187) - (=36

Which is really really small.

4.7.2 Experimental Studies

We can imagine an experimental study as a channel that turns xy, zo, ..., zy into yy, ¥, . . ., Yn,
for different inputs x;. There is some probability Q(y|z) for each y and x that we don’t know.

For an observational study, we measure the output ¥ of an independent source @, but
now we have an input ¥ and we want to figure out what 3 would be too ridiculous to come
out of Q. If you have observed (Z, ¢/), your best guess for @ is the confidence region:

{Q|Z goes into @, ¥ is not too ridiculous to observe}.

If you have a guess for (), you want to disprove it, which you can do with the hypothesis
rejection region:

{{Z,9)|% into @, ¥ is too ridiculous to observe from @Q}.

If we have some ¥ = (21, x9,...,2y), we have the possible treatments &, &, ..., &. For
example, if we have 153 patients, then N = 153. if we have three different treatments
(Advil/Tylenol/Placebo), then k& = 3. We can decide which &; the z; go into. We segregate
our output (%) according to the &;,&s, ..., &, so that we have y¢,,vs,, . . ., Y¢,, which are the
components of ¢ whose corresponding components of 7 have a value (treatment) of &. We
can split our distribution Q(y|z) into Q¢ (y) = Q(y|x took the treatment ;). This gives us
k different histograms Q¢, (), which we can treat separately like we did before.

If the histogram of our observed data y¢, is “too different” from our true distribution
Qe¢,, then at least part of the data is ridiculous:

o~ NPy, Q) o
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We can do this separately for each &;, but we want to somehow combine them, since one
part could be ridiculous when the other isn’t. We wish to blend all the decisions from the
buckets:

V2 PP 11Qe) | 9= NaD(Pugy Q) o NeDPug1Qe) <

We might have have “T'wo Proportion” Situation, where the two input possibilities of
T are &1,&, e.g. drug or placebo, and only two output values of ¥ can be taken up,
e.g. live or die. So, we have that Q(y|z) can be split into two binomials: Qg (y) ~
Binomial(p1), Q¢,(y) ~ Binomial(ps). Applying necessary approximations to our expres-
sion above, we have ) )
(h1 —p1)* | (P2 —p2) - lnl,

p1(1—p1) P2(1—p2) e
N1 N2

for our “too ridiculous” region. Dividing through, we have

(pr — 1)’ (P2 — p2)?
>1
In (E%) pl(ll\/:pl) In (5%) p2(]1V;p2) ’

which is suspiciously like the equation for an ellipse centered at (p;,ps) with respect to p;
and p,. We get that the confidence region is

In (8%) ﬁl(}v—lﬁﬂ In (E%) 132(11\7—2152) -

which is the area inside the ellipse, and our hypothesis rejection region is the area outside
the ellipse. In order to make this a single-variate distribution, we look at lines of the form
p1 — pa = k over k, and the confidence interval is the values of k that intersect the ellipse,
corresponding to the greatest and least difference in the means.

We could also have a two mean study, where y; can assume continuous real numbers,
such as the number of pounds lost after taking a drug (don’t do ozempic guys it’s not good
for your health). In this case, we have Q¢ (y) ~ N(u1,01), Qe, (y) ~ N(p2,02).

4.8 Finishing Statistics and ... (04.07.2025)

Recall the two-sample (two-proportion) problem. We have that our rejection region is

(D1 =p1)* | (P2 —p2)? ot
p1(1—p1) P2(1—p2) e’
N1 N2
and so . ) . )
(pl—pl) ( 2—]92) -1
In (E%) pl(]l\apl) In (52) pz(}V—sz)

So, our confidence region is the set

{ (P1,D2)




and ellipse. Our hypothesis rejection region given (py, ps) is

(x—a)  (y=b)? >1},

o? + 62

{@.q

for the proper «, 5. To make this univariate, we can slide a line (y —x = k) across the ellipse
instead. Consider the following ellipse:

(w=af  (w=bP _

= 7 1.
Implicitly differentiating:
2(x — a) +%2(y—b) _o,
a? dx p?
SO )
dy _ Fle—a
dzx a?(y —b) ’
SO )
bt Pz - @)
a
Plugging it back into the ellipse,
(z—a)  Fz—a) 1
02 ot E =1,
SO A
9 «
o=y
and by symmetry,
2 B
—b) = ——.
=t = 55

We have

! / 34
r=a=x —a2+ﬁ2’y:bi —042—1—527

so the max and min values of x — y are
ol 34 ol 34
“= (a_b)+\/a2+52 +\/a2+ﬁ2’62 =la=b)- \/a2+ﬁ2 - \/a2+52'

pi(1—=p1) P2l —p2)
— o =2 2 2 =29
a- e Fta \/ N TN,

And,

ignoring € for now. So, our confidence interval is (p; —p2)£“5%2 = (ﬁl—ﬁg)i\/ﬁl(}\,—lﬁl) + m(]lv;m).

Adding the € term adds a scale factor to our confidence interval but that’s too messy here.
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4.8.1 Preview to Kolmogorov Complexity

Kolmogorov focused on algorithmic information theory, which isn’t very practical and very
theoretical. Kolmogorov studied the idea of algorithmic complexity, which can be combined
with Shannon’s ideas of entropy and information.

5 Kolmogorov Complexity

5.1 Introduction to K.C.

We can consider a process as some machinery that creates data, which we want to find out.
But we can see this process the other way, as shown:

1. Forward: Given a machinery, determine the data output

2. Backwards:

(a) Given an observed data, guess which machinery would have generated the data
(b) Given data that you want to create, try to design machinery that would produce
it

For example, we have probability (forward) and statistics (backwards), ML Inference (for-
ward) and ML Learning (backwards), deduction (forward) and induction (backwards), anal-
ysis (forward) and synthesis (backwards) etc.

Mathematics can describe data pretty well (like vectors, etc.), but it’s difficult to describe
machinery. But, with the advent of computer science, we can describe machinery with code or
a program. Kolmogorov (20th century) was a superstar in mathematics during the time when
computer science was beginning to gain traction (around the time of Turing). Kolmogorov
was interested in the backwards program in terms of computer programs that create data.
There were two problems:

1. Given a Turing machine, find the output
2. Given data, find the Turing machine that would produce data

The first one is pretty simple since you can just run it, so we will focus on the second one.

Turing Machines Primitive programming language, where a program is specified by
1. Finite set of states: Q = {qo,q1,---,qn}
2. Table: @ x {0, 1,blank} — @ x {0, 1, blank} x {L, R, halt}.
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qo | blank || ¢; 1 R
qo 0 a1 0 halt
qo 1 ¢ 1 | halt
q1 | blank || ¢ 1 R
il 0 q2 0 | halt
G 1 q2 1 | halt

Gn—1 | blank || qo 1 | halt
Qn—1 0 qo 0 | halt
qn—1 1 qo 1 halt

Figure 6: Example Turing Machine

So, we start on the left, which is blank, so we place a 1 and the move right. This is blank,
so we place a 1 and move right. Repeating this, we will produce all 1’s and then halt. Each
Turing machine requires a unique table.

Let us have some program (table) p with length ¢(p), which is the number of bits it takes
to write the table. We call U(p) the output on the tape when you run the program (and
halts), otherwise we call U(p) undefined.

There are many programs that will produce the same U(p), and Kolmogorov wants the
simplest one (smallest ¢(p)). The reverse problem is Busy Beaver (largest U(p) given ¢(p)).
Occam’s Razor: My car has a flat tire. Either, there’s a nail in my tire or someone slashed
it. Assume it’s the nail. You failed a test. Either you didn’t study hard enough or your
teacher sabotaged your grade. Obviously the latter.

Basically, choose the simplest model that works. Consider some X ~ p(X). This has de-

1
p(X=x)
the shortest binary computer program that describes the object. Depending on the program,
we might be off by a constant, which is negligible.

scriptive length [log W Kolgomorov defined algorithmic complexity to be the length of

Example 1 Assume we want the output 0101...01 that has length 2n. The easiest way
to implement this is with a for loop which has around logn states (I think, not sure).

Example 2 01101010000010011110011001100111111100111 ... This looks random, but
obviously it’s just the binary representation of /2 — 1.

Example 3 11011110011101011111110110111110111010110 Even if there isn’'t a pattern,
we can just print it out!! This means that it will take n bits to describe.

Kolmogorov Complexity =z is a finite length binary string, U is a universal computer,
and /() denotes the length of the string x. We define the Kolmogorov complexity of x to be

Kuy(z) = . min, ).
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5.2 Kolmogorov Complexity Continued (04.15.2025)

Ky(z) = i (p)-

Theorem 1 Universality of K.C.

If U is a universal computer, then for any other computer A, we have Ky (z) = Ka(z)+ca,
for strings x € {0, 1} and cy4 is constant w.r.t. x.

Proof: We have a program p, for a computer A to print some z, so A(ps) = z. We can
precede this with a simulations program s4 which tells computer U to act like computer A.
Then, U can interpret the program for A, perform the calculations, and print x. The program
for U is thus p = sapa (concatenation), with length ¢(p) = €(s4)+{(pa) = ca+{(pa). Then,

Ku(e) = min(p) < min (Kp) + ca) = Kala) + s

Don’t worry too much about < vs =, since for long enough strings =, we can neglect the c4.
In other words, the K.C. doesn’t depend on what computer we use.

Theorem 2 Bounds on K.C. If we don’t know ¢(z), we don’t know where to stop, so we
need more information to know when to stop printing.

K(z) < K(x | l(z))+logl(z) + c.

Basically, it takes the length of the program given how long it is along with how long the
string is to describe it. For example, if we want to print 100!, we don’t know the K of the
computer to describe it. But, once we tell it that it’s 525, then we can describe the output
with the number 525 (encoded with at most log 525 bits, although it could be shorter), along
with K(100!¢(100!) = 525), which is the K.C. given that the output has a length of 525.

Theorem 3 The number of strings = with complexity K(x) < k satisfies
Hz € {0,1}" : K(z) < k}| < 2F,

where {0, 1}* is Kleene closure. This is true because 20 +2! +22 4 ... + 21 = 2¥ 1 which
is the possible strings of length less than k.

Moving on Remember binary entropy Hs(p) = —plogp — (1 — p)log(1l — p). Let x; be
i.i.d. bernoullis, so T = % > x;, and we define

1
H, (— le) = —Z,log &, — (1 — Z,) log(1 — ).

n

THIS IS NOT ENTROPY OF z!!Il IT'S JUST OUR SHORTHAND. https://en.wikipedia.

org/wiki/Abuse_of_notation.
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Using Stirling’s approximation,

2nk(n — k) < k
Bl 1 )
Sk = o), \ 207 Ry (/) o () /)
v Ly
N 2rk(n — k) (Q_HQ(]“/”)>
< gnHa(k/n)

since

K.C. and Entropy Let X; be drawn i.i.d. according to some f(x), where z € X is in
some finite alphabet. We have f(z™) = [[;_, f(x;). Then, there exists some constant ¢ such

that
H(X) < 23 pake) < Hx) + 12D

c
logn + —.
n

Furthermore, E [2K(2")] — H(X) as n — oc.

5.3 Kolmogorov Complexity and Entropy (2025.04.17)

Examples
e A sequence of n zeroes with known n, the K.C. is O(1).
e First n bits of 7, K.C. is also a constant with known n.

e Printing n, K.C. is logn + C.

Homework

o K(z,y) < K(z)+K(y)+c, to print out xy just print « and then y, so you can combine
the programs and add the K.C.
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e K(n) <logn+2loglogn+ c, if we want to print n, we need to specify the length of n,
which is logn, but we also have to specify the length of logn, which is loglogn, etc.
But, we can collapse the higher order terms into another loglogn term, so an upper
bound is logn + 2loglogn.

o K(ny+ns) < K(ny)+K(n2)+c. We can tell our computer to add instead of concatenate
as in question 1, so this follows.

e The K.C. of an image on a n x n grid. A horizontal line would be K (x|n) =logn + ¢
to describe the row, a square is 3logn + ¢ to describe x, y and the side length, and
two lines is just 2logn + c.

Example Let’s say we have a sequence of n (given) bits with k (not given) ones. Then

the K.C. is
n

K(z|n) = log (k) +logk + ¢,

since there are (Z) options, and we have to specify k£ with log k bits. From our prior approx-

imation, we can simplify this to

k
nHo (ﬁ) +logk + c.

As we claimed last time,

X1

H(X) < % > faMK() < H(X) + ( log n + %

How do we prove this?

Lemma For any computer U, we have

Z 27t < 1,

p:U(p) halts

assuming that p has no dead code. This is because a halting program cannot be the prefix of
another longer program (since otherwise that program would halt upon reaching the prefix).
So, all halting programs form a prefix-free set, and thus the Kraft inequality applies.

First, we will prove the lower bound. Assign to each x™ the shortest program p with
U(p) = z™. By source coding theorem, we know that E[codeword length] > H(X). Therefore,

> f@MK(@") = H(wy, aa, . 10) = nH(X),

since f(x™) is the probability of the string 2" and each z; is iid.

Now we can move onto upper bound. We will first pretend the string is binary, in which
the x; are Bernoulli i.i.d. with probability p. From our previous example of an n-bit string
of k ones,

K(z") <nH (E> +logn+C <nH (l2x2> + logn + C,
n n
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since k < n. Taking expected values of both sides,

E[(2")] < nE {H (% Zx)} +logn +c<nH <% > E(mi)) +logn + C,

by Jensen. So,
E[K(z")] = nH(p) + logn + c.

Dividing by n yields the result of our upper bound. In general, for non-binary strings, it’s
no longer binary so we use H(X) instead of H(p). Also, our logn term needs to be replaced
with (|]X| — 1)logn, since we not only need to specify the number of ones, but also the
number of twos, threes, etc. for all |X'| — 1 possibilities (other than zero). Basically, we have
to describe the type of the sequence (how many ones, etc.) and then we have to describe
which of those sequences we want.

Incompressible Sequences Let X;, Xs,..., X, be drawn according to Bernoulli(0.5).
Then
P(K(z") <n—k) < 27"

In other words, most random sequences aren’t compressible.

5.4 Finishing Kolmogorov Complexity
5.4.1 Incompressible Sequences
Let X1, X5, ..., X, be drawn i.i.d. according to Bernoulli(0.5). Then,
P(K(z") <n—k) <27k
Why?
P(K@a")<n—k)y= >  Pa"= > 2r<2rfarm=oh
2K (2) <n—k 2K (e <n—k

since there are at most 2"~ programs of length less than n— k (remember the Kleene closure
thing earlier).

For example, the fraction of sequences of length n with complexity less than n — 5 is less
than 3% So, random strings are pretty much incompressible on average.

Universal Probability Assume that a computer is fed a random program. Most programs
won’t work, but if they work, will the output be random? We define the universal probability

of a string = to be
Py(x)= Y 270,

p:U(p)=z
This is the probability that a random halting program drawn as a sequence of coin flips will
print out the string x, given that it has no dead code. By Kraft inequality (no dead code,
prefix free), this is a valid probability < 1.
What does this have to do with Kolmogorov Complexity? We have that
K(z) = min {(p).

p:U(p)=x
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Theorem There exists a constant ¢ independent of z such taht

27K < Py(z) < - 2770,

There is a similar relation between IC(z) and log #(I) as there is between H(X) and log ﬁ.
You can think of the program as a Huffman code or something, although you don’t know

the probabilities.

Chaitin’s Number 2 We define

0= Z 2—U(10)7

p:U(p)

which is P(U(p) halts). We are looking at the programs that halt, which are prefix-free, so
0<O<1.

To know the first n bits of 2, = wiwsws . .. w,, we would have to determine the halting
problem for all programs < n bits long. () is uncomputable: funny busy beaver stuff and
27-state Turing machines that only halt of the Goldbach conjecture is true.

Fun exercise: We want to know if py halts, where pg is ng bits long. Assume we know
Chaitin’s number truncated to ng bits, 2,,,. We can start a ton of really good computers in
parallel running a bunch of Turing machines. If we wait some time, we can see that some
programs have halted, and sum 2-®) for those programs. Eventually, this number will get
bigger than €2,,,, since Q > ,,,. Once we notice that 27“® > .. we must have added all
halting programs with length < ng, so we can test the status of py. But, the halting problem is
undecidable (https://en.wikipedia.org/wiki/Halting_problem), so we cannot compute
Q.

6 Portfolio Theory

We will talk about some topics in investment “science.” After the dot com boom, everyone
working in cs got recruited to the dark side to make models for risky investment and infinite
money. In the 1990’s a lot of models were created, such as Black-Scholes, Markowitz, William
Sharp, etc. We will talk about Mean-Variance portfolio theory.

6.1 Mean-Variance Portfolio Theory (4.21.2025)

We will look at our return after At time. We define total return to be R = % = %
Our rate of return is r such that X; = (1+7)X,, or R = 1+r. Let Xy, be the initial amount
invested in the ith asset. We have Xy, = w; Xy We have ) w; = 1, but w could be less than
zero (shorting). We assume that R is a random variable, so we will look at E[return] and

Var|[return].

6.2 Markowitz Model (2025.04.23)

Remember that we have a bunch of assets, each with different rates of return. We have
Expected return and Variance, so we call this Mean-Variance Portfolio Theory. Remind
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ourselves about covariance: Given R.V.’s X; and X5, then

COV(Xl, XQ) = E[(Xl — X1)<X2 — XQ) = E[XlXQ] — Xng.
Clearly, this is symmetric, so we let
COV(Xl, XQ) = COV(XQ,Xl) = 21’2 = 22’1.

If ¥ 5 = 0, then we say that the two variables are uncorrelated. NOTE: this is not the
same as independent; independence is a stronger condition than uncorrelation. We also have

the correlation coefficient
o Y12 B Y12

B 0102 B \/il,l\/EQ,Q’

where o; is standard deviation, not variance, and you can prove that —1 < p < 1, by Cauchy-
Schwarz. p is zero when they are uncorrelated, negative if they are inversely correlated. We
have

Var[X1 + XQ] = E[(Xl + X2) — (Xl + X2>]2 = 0'% + 221’2 + O';.

Example Consider a wheel with the outcomes 4, —1,2,—1,3,0. If you bet 1, then the
payoff is the segment of the wheel you land on, with uniform probability. If our return is a
random variable, it has an expected rate of return of 7 = 1/6 and o2 = 3.81.
We can draw a Mean-Stdev diagram, which is a scatterplot of your n assets of their
return (7) with respect to their risk (o).
T

g

We have n assets 11,79, ...,7,, with E[r] = 7, E[ry] = 7, ... We construct a portfolio
with weight w; (possibly negative for shorting) and r = wyry + ware + - -+ + w7y, SO

E[r] = wir + waTy + « -+ + W, Ty,
with

o = E[(r — )]
—E [(Z wir; — Zwm)g]
= Z wiw; Y ;.

Diversification Consider a portfolio of n stocks, with some r; and the same variance o2,
and let w; = L. If our assets are uncorrelated, then r = >~ % We have
2

Var(r) = 7

n
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Now suppose that the stocks are correlated, such that
Cov(ry,7;) = 0.307.

Now,

2
0-707 302,

Var(r) = % [no®+ (n* —n) - 0.30%] =

Note that as n — oo, there is no risk for the uncorrelated stocks, but if there is correlation,
then there is an asymptotic limit of risk. We assume that people are risk-averse and want
to reduce risk.

We can make a diagram of a portfolio. If we have two assets ri,ry with 7,07 and 7, 0.
Assuming that w; + ws = 1.

The curve in an 7-0 diagram defined by a nonnegative mixture of two assets lies within
the triangular region defined by two assets and a point on the verticle axis with height

109 + T901
0'1—|—(72

A=
Since w1 + wqe = 1, let w; = a,wy = 1 — . Then
Elr(a)] = (1 — a)71 + ar

and

o(a) = \/(1 — )20 +2a(l — @)X 2 + a?o? = \/(1 — )20} 4 2a(l — a)oy09p + a202.
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If p=1, then 0 = (1 — a)oy + aos. If p = —1, then o(a) = |(1 — a)o; — aos|. We can then

solve for A to get
f10'2 + 7:20'1

o1+ 02
We can extend this to n assets. We can plot the n points in our plane and find all the
combinations of the assets, still assuming >, w; = 1. The set of all points that correspond
to these portfolios is called a feasible set.
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This set is left-convex, so the segment between two points in the feasible region will not
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cross the left boundary of the set. Shorting lets you extend further to the right.

For a certain o, we want the highest 7, and for a fixed 7, we want the lowest 0. We define
the minimum variance set to be the leftmost boundary of the feasible set (between 1 and 3
on the diagram).

6.3 Feasible Region cont. (2025.04.25)

For a fixed o, we would want to maximize 7, while for a fixed ¥ we minimize o to minimize
risk. Thus, there is a frontier (https://en.wikipedia.org/wiki/Pareto_front) that is
basically the only part of the feasible region that matters. This left boundary of our 7-o
graph is called the minimum variance set. The efficient frontier is a subset of the minimum
variance set, and it is the upper portion where 7 is above some threshold.

The Markowitz Model seeks to calculate the points on the efficient frontier. We have
n assets with expected returns 71,7, ...,7, and covariances %, ;. We invest with (possibly
negative) weights w; where 7 = > w;7;. We fix the overall mean 7 and find a feasible portfolio

of minimum variance with this mean return. The problem is thus
|
min -0~ = min — WiW; i
wy 2 wy 2 ’

under the constraints
Zwﬁi:f szzl

(the § is just for convenience).

Example with 2 assets

1
oL
. :w10%+w22172 —Arp —pu=0.
8w1

We have the same thing for wy by symmetry, and we can just solve this system using
linear algebra.

Example: 3 uncorrelated assets We have 3 uncorrelated assets with variance 1. 7, =
1,79 = 2,73 = 3. Where is the minimum return and lowest risk?

2 _ _ 2 v/
of =) wwSip =) wi (S =0)
%, %

Ez%Zw?—/\(Zwm—f) —u(Zwi—1>
oL

awi N

Ok trust me the solution turns out to be w; = %, r=2,0=

-
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Linear Combination Suppose I know that there are 2 known solutions on the efficient
front: some Wy, A1, 1 along with s, A9, ps for a different 75. If I form a linear combination
of 7 = ary + (1 — )7y, then aw + (1 — a)wy is a point on the efficient front. The weights
are thus linear, but the o need not be. This motivates us to find the two simplest portfolios
we can have to span the space of the efficient front.

6.3.1 Two Fund Theorem

Two efficient funds can be established such that any efficient portfolio (in terms of mean
and variance) can be duplicated as a combination of these two. As an investor, you only
need to invest in combinations of these two funds to do anything. The simplest scenarios
are \=0,p=1and p=0,\=1.

7 Presentations

7.1 Entropy of Chinese (2025.04.25)

Marcus, Jonny, and possibly Daniel.

7.1.1 Gendered Language (Jonny)

Why is it effective when it seems arbitrary? Reducing entropy of the next word: Spanish ‘la’
reduces the possibilities of what comes next more than English ‘the’. German is an extreme
example of a gendered language, gender also carries semantic meaning;:

1. masc: der band — volume

2. neu: das band — ribbon

3. fem: die band — musical band
4. any plural: die

Why not gendered, or what does English have in place of gender? Adjectives, other
constructions. Study: speakers of gendered languages scan for words that agree in gender
upon encountering a gendered word. Efficient for attending to words that go together?

TTR (Type Token Ratio) as a measure of complexity.

# of unique words
# of total words

This is some constant for english: -k vs. —

515 1ok for German. How does English convey
meaning differently from German? There are two main theories: 1) that English does not
have a diverse vocabulary but specificity comes from adjectives, or 2) that English is diverse

and adjectives merely facilitate.
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dog — retriever — daschund

In the first theory, dog should be modified the most while daschund the least to achieve the
desired specificity. The opposite is predicted by the second theory.

We graph the frequency of an adjective vs. the entropy. Supports theory 17 Whereas
German conveys meaning with articles/gender, English does it with adjectives. Adjectives
reduce the entropy of the next word in English while articles do the same in German.
Adjectives come before the noun in English, whereas in other languages they come after.

Gender’s purposes: Ease of learning, efficiency in communication. Tradeoffs in what’s
important.

Redundancy of adjectives: Why say ‘cute little puppy’ or ‘nice cold beer’? Adding
redundancy reduces entropy of next word and adds resistance to errors.

7.1.2 Chinese (Marcus)

Idiosyncratic classifiers are the exceptions to the general rules for things like ‘yi ge.” High
entropy, makes the language harder to learn.

Conditional entropy H(C|X) should be near 0 as the classifier should be determined
by the word, and mutual information 7(C; X) should be high for idiosyncratic classifiers.
Remember that

I(C; X)=H(C)—- H(C|X).

The X can be nouns or other things like semantic classes. We can calculate these quantities:
H(C)=5.61, H(C|N) = 0.66, I(C; N) = 4.95 where N is a noun. H(C|S) = 1.47 where S
is a semantic class.

These idiosyncrasies seem to be relics from how the language evolved, and info theory
can be used to quantify idiosyncrasies.

7.2 Generalizations of Entropy (2025.04.29)

Jacqueline and Ainslie

Jacqueline Renyi Entropy is a generalization of Shannon Entropy H(X) = — > p; log p;.
Shannon occurs as a special case of Renyi with o = 1.

1 (63
Ha:l—a10g<zpi> 0<a<oo

There are singularities at a« = 1,0,00 and they are some interesting cases. To show that
Shannon occurs in the limit as o = 1, we use L’Hoptial’s rule

(1)

a—1 1 —« a—1 —1

Properties of Renyi entropy:
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Figure 7: Binary Renyi entropy is convex.

1. Regardless of o, Ho(X) is the same for uniform X. In this case, all p; = * and

1 a 11—«
H,(X)= 1_alog(nn ) = 1_alogn.

2. Renyi entropy is convex. The binary Renyi entropy function looks like this [Figure 7
Thus, for a fixed random variable, the Renyi entropy is decreasing with respect to a.

3. As « approaches 0, it weights probabilities more equally. This is Hartley entropy:
Hy(X) =logn.

4. For a@ = oo, we can ignore all p; except for the biggest p;. The Renyi entropy is thus
approximately

Heo(X)

=1—a log(max p;) = — log(max p;).

This is min-entropy, where we do not care about any outcomes other than the most
probable one.

Ainslie: Applications to Ecological diversity An important metric is species richness.
Given n species with p; relative abundance each, ) p; is the species richness. The shannon
index is the entropy of p;, —>_ p;logp;. The Simpson’s index is > p?, and it is a similarity
index quantifying how likely two individuals are from the same species.

Hill defines a Hill number, and it is related to the Renyi entropy:

1
D= (Dop) " =2t

As ¢ — 1, D approaches shannon entropy/shannon index, and as ¢ — 2, D approaches the
inverse of Simpson’s index.

Aw and Rosenberg comes up with more metrics: For genetics, the three outcomes that
matter are homozygous AA, aa, and heterozygous Aa. Expected homozygocity J and ex-
epcted heterozygocity H can be quantified with

JO(p) = "l
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H@ (p) —1-J@

The q depends on the number of alleles, humans are diploid so ¢ = 2.
This can connect to Renyi entropy

1
—4q

H, = 1 log J@

D, = 2"

Another thing we can do is generalize Kullback-Liebler with Renyi divergence:

1
D.(P|| Q) = 1 ( o .H) .
(Pl Q) = —log (D pid!
We can show in the limit as a — 1 this approaches Kullback-Liebler. I don’t want to
write this.
Also financial applications: the expected rate can be
1 R—1

Dy/r(b || m).

7.3 Info Theory in Linguistics (2025.04.29)
Alex Huang and Aarush Vailaya

What is linguistics? Scientific study of language. Phonetics (sound, phonemes), syn-
tax/grammar, semantics (meaning), morphology, phonology (sound system/inventory).
Sociolinguistics, developmental linguistics, neurolinguistics, applied linguistics.

Zipf’s Law In a list of measured tokens sorted in decreasing frequency, the nth entry has
frequency of approximately 1/n. The most common word in a language is twice as common
as the next, 3x as common as 3rd, etc.

Word length and information content. The average information content is a better pre-
dictor of word length an frequency.

Let C be context (previous n words in the n-gram model) and W be word. The average
info content is the entropy(?)

— > P(C|W)log P(W[C).
Using an n-gram model, we can test our hypothesis. This hypothesis holds for most lan-

guages in 2, 3, and 4-gram models. Polish and Swedish are not nice though. The correlation
between word length and frequency was weaker than info content and frequency.
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Aarush: Language acquisition: There seems to be a strong lack of negative feedback in
acquiring language for babies. You never tell a baby that what they said is wrong, you only
really provide a wide array of correct sentences. How do you not end up with over-general
rules?

Solomonoff induction is a formalization of Occam’s razor. The prior A is the base hy-
pothesis, that some random program is producing the output that we see. We can reuse
some Kolmogorov ideas.

A(n) = D 9~HP)

valid programs that produce n

A(n) is our estimate for the probability of outputting n, and this is biased towards short
programs due to the process of selecting a random program (start writing random bits until
its a halting program). We start by saying that all random programs are valid, then getting
rid of any programs that do not match what we see at each step. This is effectively computing
conditional probabilities, conditioned on preceding context.

At the start, many programs would output the thing, but we throw away possibilities as
we see more and more input. Solomonoff induction is that A will approach the behavior of
the real program/probabilities P as we see more and more output.

o0

Z[P(xipcl,xg, ...) = A(...)]* = constant

Assume that babies are Turing-complete. Upon seeing an infinite number of correct
sentences, they will converge on the exact program that produced those sentences.

7.4 Neil’s thing (2025.04.29)

Delsarte Linear Program We have some variables in Z, and we want to minimize AZ
under the constraints Bx > 0.

Let us try to write the problem of optimizing codes in a linear program. We have code
words and errors. To find codewords of length n that minimize error from, I want a set of
codewords C' C Z% where Hamming distance d(cy,¢cy) > d for all codewords ¢;,¢p € C. 1
want to find the largest such subset C'.

Now we do the cube thing. For example we have Z3, we can draw a graph between all
elements with edges colored according to the hamming distance between them. We can also
do this by defining the set R; = {(c,, ) : d(ca, ) = i}.

1. Ro={(c,0)}
2. R, = {(ca,) : d(ca,cp) =1}

3. Let pﬁj be the number of codewords z such that there exist z,y where d(z,y) = h,
d(xz,z) = i, and d(z,y) = j. We count the number of z where we can find h-apart
codewords that are 7 and j away from z. For example, p}, = pi, =0, p}, = 3.
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Matrix interpretation of the graph/sets R;: Let A; be the adjacency matrix corresponding
to R; (or the edges of a certain color in our graph). For our example our matrices are nice.
Ap is the identity, A, is 1s on the other diagonal, and

0110
100 1
A1—1001
0110

If we multiply matrices, we have A;4; = >7_, pﬁjAh for some reason. Because multi-
plication is a linear combination of the base matrices, we can build a Bose-Mesner algebra,
closed under multiplication and addition. Multiplication is commutative in this algebra. The
A;s are a basis for this algebra, but we also have another basis FE; defined such that

EZ-EJ-:{O i#
E, i=j

These are the projectors.
1
EO - Z_L(AO —|— Al + AQ)

1
Ey = §(A0 — Ay)

1
Ey = Z(Ao — A+ Ay)
We can also find eigenmatrices. There exists a matrix P such that
[Ao Ay ] = [Eo FE, ]p

and this matrix P is invertible even though we are dealing with integer matrices.

12 1
P=|1 0 -1
1 -2 1

To find the set of codewords we solve the following linear program: a is the distribution
such that
(C'x C)N Ry

€l

a; =

1. aozl

2. a; = 0 for 1 <14 < d, where d is the original restriction for the minimum distance
between codewords.

3. a; >0foralli
5. aP >0
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7.5

Quantum Information (2025.05.01)

Grant and Rohan

Fundamentals of Quantum Computing

1.

In Quantum Mechanics, objects no longer have a single deterministic state like a clas-
sical object and are instead in a superposition.

For example, uncertainty in position and uncertainty in momentum are inversely pro-
portional (Heisenberg Uncertainty).

So instead of using a point in phase space to describe an object, we use a state vector
|1}, which can be thought of as a linear combination of some basis states

However, for this presentation, we will be focusing on discrete states which attain
discrete values, such as the states of an electron: spin up (|1,)) or spin down (|.)).

Not only can we have states like |[1,) and |].) but also \/Lﬁ 1T2) + \/Li |42) , which might
represent spin right (|1.)).

By the Born Rule (see later), this particle has a 0.5 probability of being measured spin
up and a 0.5 probability of being measured spin down.

The Kronecker product ® is used to glue two quantum states together.
(a1 1) + a2 [1)) @ (b [1) + b2 1)) =

aiby [1) @ [1) + arb2 [1) @ [{) + a2br [1) @ [1) + a2b2 [{) @ [)
This is also how we describe entangled pairs of particles: \% M @4 + % L) @ |1).

For convenience, we will omit the Kronecker product symbol when writing it out, e.g.
|0) @ |0y — |00) .

But, do not forget that the Kronecker product is still there.

How Quantum is Different

1.

2.

3.

4.

Say you have a mixture of quantum states:
50% spin right |1,), 50% spin up [Ty).

(Classically, this is 1 bit of information.

However, you cannot make a measurement without skewing the distribution away from
50-50! The least you can disturb it is with a 45-degree axis, yielding only H(cos* §) ~
0.6 qubits.

Because of entanglement, we can also do funny stuff like send 2 classical bits in 1 qubit
given a shared entangled bit (superdense coding).
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The Born Rule and Dirac-von Neumann Axioms
L. [¢)y=ci]a) +co|b) + ..., c1,09,---€C
2. P(¢ is in state a) = |(a|y)]?
(W) =1, (alb)=0. (¥ =cilal+cbl+...
4. Any observable can be represented as an operator (matrix) A. The expected value of

A is denoted (A) = (1] A [4)).

(a) Let |A;) be a set of eigenvectors of A. Assuming that the eigenvectors are non-
degenerate, we can get an orthonormal basis that spans the space of quantum
states (spectral theorem).

(b) If we express [¢)) in this basis and interpret the eigenvalues a; as the values for
the observable, (1| A[1) reduces to the usual formula for expected value!

A= Za |A;) (A
W> = Zci ’Az>

A |¢> = Z%‘Ci |Az> A |Az> = a; |Az>

)

(WIA[) =Y aice; = Z a;Py(|4;)) = (4)

1

Mixture States and the Density Matrix

1. The density matrix is a more generalized way to write a wavefunction that allows you
to deal with mixture states.

2. p = [¢) (¥], so the probability of measuring state a is (a|pla). p is an observable
representing ‘how likely is 17’ and (A) = tr(Ap).

tr(Ap) = tr (Z a; | Ai) <Az"> (Z cjcr | A;) (Ak:\)

= Z@i|0i|2 |A45) (4] = (A).

7

=tr Z a;cicy, | Ai) (Axl
ik

3. If we want to represent a mizture state instead, that is a distribution of possible states,
we can just do p = Y. p; [1;) (;]. We can’t use wavefunctions because those can only
handle superpositions, not mixtures! Think about the expected value formulae.
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Von Neumann Entropy

1.
S = —tr(plnp)

2. A projector is an operator such that IT> = II. For example, IT = |z) (x|. If we sum the
projectors for each basis vector in an orthonormal basis, we get the identity. Projectors
are important because they represent the process of measuring and collapsing a possibly
mixed quantum state.

3. We can show that
S= min |— E tr(1L;p) In(tr (11,
! i ( ,O) ( ( p))

{II1,2,...

e where the minimum is taken over all sets of projectors such that ). II; = I and
for each projector tr(Il;) < 1.

4. In other words, S is the absolute minimum amount of uncertainty under the most
efficient measurement we can make, which happens to be in the orthonormal eigenbasis.

Since p is a hermitian matrix (i.e. pf = p),
p=Y_pilvs) (Wil = mild) Gl

where |j) are orthonormal eigenvectors with eigenvalues 7);. Furthermore, by Born’s rule,
the eigenbasis measurement is optimal for distinguishing states. Since the probability of
measuring |j) is 7;, it’s natural to set S = — Zj n; logn;. Also, note that, for some unitary
U and some real diagonal matrix D and using the matrix logarithm,

—tr(plog p) = —tr(UDU'U log DU)
= —tr(UDlog DUT)
= —tr(Dlog D)
= —) n;logn; = 5.

J

Schumacher Compression Recall Shannon’s source coding theorem:

Theorem. (Source Coding Theorem) If we send n symbols drawn i.i.d. from some R.V. X
with entropy H(X), then we can compress our codewords so that we only need to send
nH (X) bits, which is lossless as n — 0.

We used Huffman coding to actually implement such a compression, which achieves this
rate for large n. We have a similar theorem from Benjamin Schumacher:

Theorem. (Schumacher Compression Theorem) Given n qubits drawn from some source p
denoted as p®", with von Neumann entropy S(p), then we can compress the source down to
nS(p) qubits, which is lossless as n — oo.
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An Example I Let’s say that we want to send three qubits drawn from the distribution
with P(¢¥ = |1.)) = P(¢¥ = |1,)) = 0.5, where

[T2) =10}, [12) = \f 0) + \/_ 1)

in the basis |0), 1) . We can calculate the density matrix of p to be

|

NN
W s

] =0 [07) (O] + Aur 1) (1]

8 s

T |cos T )
—cos? = | . 8 [cos % sin %]
sin §

o T | sin% . x
+ sin 3 { COSSJ [sm% —cosg}.
We see that S = Hy(cos? %) ~ 0.601, and 3S < 2, so we can compress our 3 qubits into 2
qubits without losing too much information.

An Example II The probability measuring [0) is cos* £ ~ 0.854, and the probability of
measuring |1') is sin® T & 0.146, so if we measure our three qubits in the |0'),|1’) basis, we
expect for them mostly to be |0') . Specifically, the probability that our message is in the set
spanned by {|0'0'0") , [1'00"),|0'10) , [0'0'1")} is cos® £ + 3sin® £ cos* £ & 0.942.

This smaller set can be rotated to {]|000),]010),|100),|110)}, and we can measure the
third qubit to collapse (project) our state onto a smaller subspace. after discarding the third
qubit, we have compressed our three qubits into two. The person receiving the two qubits
can append |0) and apply the inverse of the encoding rotation to obtain their own density
matrix p’. We can calculate the average fidelity between p’ and p to be around 0.923, which
means that there is a 92.3% chance that p’ and p would be measured identically, so this is a

pretty good compression.

The General Process

1. But wait! 92.3% is not good enough. We want lossless, not lossy!

2. Turns out that as n — oo fidelity approaches 1. In general, Schumacher compression
involves projecting p into a “typical subspace,” the subspace spanned by the most
likely eigenvectors.

Typical Subspaces
1. The law of large numbers dictates that as n — oo and for i.i.d. Xj,
—logp(X™) = long ) — H(X1, Xo, ..., X,)
=nH(X),
where X" is a string of n i.i.d. random variables X;. This is the asymptotic equipar-

tion property.
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. A typical subspace for some arbitrary ¢ is the space spanned by

13 = {5 5| L rogpaete) — 1) < 5}

where H(X) = - px(x)logpx(xz) =S and py is our eigenvalue decomposition for

p =2, px(x)|z) (x].

The probability that our sequence p®" lies in this subspace is tr(I1p®"), where II is the
projector Y .cp, |2") (2"].

In the limit of infinitely long sequences, all sequences lie in the typical subspace:

lim tr(Ip®") =1

n—o0

However, the dimension of the subspace is bounded by 2759 This is often signifi-

cantly smaller than our full space, which is of size 2". In short, the subspace is small
but the probability that p®™ lies in it approaches 1 asymptotically.

So What?

1.

Quantum Computing can be a very very powerful tool in certain scenarios, e.g. Grover’s
Algorithm, Shor’s Algorithm, HHL Algorithm, allowing us to solve some very specific
problems faster than any classical computer could.

. But, if we want to send qubits across distances, like from the output of these algorithms,

it would probably be very expensive because we don’t want to disturb our very delicate
and complicated superposition state.

So, Schumacher compression provides a scheme that allows us to (for large n) transmit
our qubits at a better rate without loss, which will save a lot of money.

. We didn’t mention this, but there are also error correction codes for qubits, which

involves a “syndrome” measurement to check if the qubit is in the correct subspace.
There are also theorems relating to channel theory and quantum information, but they
are pretty complicated.

7.6 Kalman Filters (2025.05.01)

Atharv and Aggs

Say we want to estimate the position of a car X, but we only have a GPS chip that gives
X + W where W ~ N(0,0?) is some random noise. The best estimator should be the mean
of all measurements, but how do we know that? An estimator is some function of all our
measurements X (Z1,Zs, ..., Zy). A linear estimator is the best for our distributrion, so we

~

can do X = w2y + weZs, ... w,Z,. An unbiased estimator has the property F[X(2)] = X.
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To find a good estimator, let’s do recursion on the base case of Xl = Z;. We want an
expression for X given X;_; and Zj.

Xk = an—l + bZk
E[X)]=aX +bX  ca+b=1

The best estimator should give the most information about the variable, i.e. maximize
I(X;Zp| Z1 9, k1) = HX|Z k1) — HX|Z. k)

Because our things are gaussian, we can expand it. To maximize mutual information, we
want to minimize the variance of our variables:

o o 1 iy
H(Xp—1) — H(Xi) = §1Og 2 |-

O

We just minimize Var[X,] = (1 — t)2Var[X,_1] + t>02 by setting 2 =0 and find that the
gain
t = O
o2+ o7,

Update our estimate based on gain ¢ and innovation (direction to step to go from current
estimate to the new data): ) X X
X = Xpo1 + (2, — Xjo1)

Matrix time Now we upgrade everything to matrices
X = Fp X1 + BpUi + Wy

W), is process noise ~ N(0, Qx) where Q) is a covariance matrix. Uy is input to the system
(steering, etc) and By transforms it into the state basis.
We measure
Zy = Hp Xy, + Vi

where Hj, is a matrix that transforms state to measurement, and V} is more noise ~ N (0, Ry).
It convenient to define the covariance of difference between the true value and our esti-
marte:

Pk|k: = COV(Xk — Xk‘k?>
Cov[X] = E[(X — E[X])(X — E[X))"].
First, we want to predict the thing:
Xk\k—l = Fka—1|k—l + BrUy

Pyt = FyPo_ip—1 Fyl + Qi
The first term is Cov|[FjX;_1].
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Then we need to update the thing using the innovation g
O = Z, — HyXujp
Sy = H,Pyp—1H + Ry,

and the Kalman gain:
Ky = Pk\qu;?Sk_l

We update the state ) X
Xk = Xpjp—1 + Ky

Py = (I — Ky Hy,) Py

In the real world, we dont really know () or R but we can estimate it to try to get Kalman
gain.

7.7 Control and Model Uncertainty (2025.05.01)

Ritik Raman

Application of info theory to econ. A model is some theory about a variable or outcome
(probability distribution). We find the best actions (maximize expected utility/reward)
under the model. But how do we know the model is right?

Robustness: We try to optimize within a set of plausible models instead of just one
model. Increases resilience, balances performance and risk aversion.

We have some true distribution P and some belief Q). Our expected utility is Ep[u(x)] =
>, P(z)u(x), which for some reason is the negative of what you'd expect? We want to
minimize D(P||Q). We want to find

min Ep[u(z)] + 0D(P||Q)

0 is our confidence in our model Q. Let m(x) = ggg We know Y m@ = 1. Our expected
utility is Y mQu and D(P||Q) = > mQ) logm.
We reframe our problem as

min ZQ(mu—i—@mlogm)

m:Eg[m]=1

After doing lagrange, we get that

Our robust expected returns is

v = 018 o oy (1)

We can take the limits of 6 to see what happens if we dont trust our model at all or trust it
completely:

lim V' = didnt catch it but probably » Qu(xz)  lim =---

f—o00 0—0
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Example We have a good z; and bad xs. u(zy) = —10 and u(z2) = 0. We have the
belief Q(z1) = 0.9 and Q(z3) = 0.1. If we plug and chug we get V(0 = 1) ~ 2.302,
V(0 =5) ~5.753, and V(f = c0) = 9.

We have applications in asset pricing, risk calculation, game theory, etc.

7.8 Game Theory

Daniel

Passwords are still important, used to guard valuable cryptographic secrets and things.
Tradeoff between ease of use and security; do we force ourselves to memorize long random
strings, or do we accept weak, easy to guess passwords? Let us analyze the game theory of
attacker vs. defender, which we model as a 0-sum game.

We will use a mixed strategy, using a mix of weak and strong passwords which we switch
out randomly. Shortfalls of this analysis: considering a password’s ability to defend against
brute force gives an upper bound for its strength, as an attacker may use smarter strategies.
We also do not have full knowledge of the true probability distribution of passwords, so
a password with high entropy (based on calculations with our limited knowledge) is not
necessarily high-resistance.

Let us consider players P, (defender) and P (attacker). Let PS; and PS; be sets of pure
strategies for each of the players (policies for choosing passwords, strategies for cracking
passwords), and let S(PS;) and S(PSs) be sets of mixed strategies built from pure ones. If
uy and ugy are utility functions S(PS;) x S(PSs) — R for each player, then the Pareto-Nash
equilibrium is a set of strategies consisting of z* € S(PS;) and y* € S(PS,) where

ui(z®,y") Sw(z,y”) Vo e S(PS)
ug (2", y") < us(z”,y) Yy € S(PSs).

Neither player wants to deviate from their current strategy (remember that the utility func-
tion is the negative for some reason). Let X be a random variable representing the pass-
word. The attacker need only guess one password, so they are against the min-entropy
H.(X) = —log(maxp;). However, the defender is against the full Shannon entropy H(X)
to store all their passwords. In addition to entropy terms, we want a term for the cost of
switching passwords (people might get annoyed or become lazy): Dy (P || Q) = 3 plog®
where P was the old password and () is the new password. This measures your expected
surprise at the new distribution if you were still operating under the old distribution.

We only need to consider P;’s costs in computing equilibrium as they choose the password.
Let the switching cost from 4 to j be S; ;. At this point Daniel said something about linear
programs and I have no clue what happened. I guess we just find the x € S(PS;) that
minimizes all our different goals at once. There are going to be multiple Nash equilibria
depending on what we choose for our &, how much to weigh each individual subgoal/factor.

Let’s say P, has two strategies: the strict policy X; with H(X;) = 48 (= 6 bits per
character), and free choice policy X, with H(X5) = 14 (1.58 bits per character). If we assume
people will still choose english-like words even with the strict policy, we have H(X;) = 17.
The numbers for free choice is based on a 2009 paper about the entropy of English words. If
we assume certain “core words” (say 3000 most common) will appear much more frequently
(10/11 of all words will be a core word), H.(X>) reduces to 11.7 bits.
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We can calculate D(X; || X2) = 3.29 and D(X, || X;) = 4.86 (switching to a stricter
policy is harder than switching to a more relaxed one). We assume that if you stay on the
same policy, you change 1 character of you old password? This also means that if you switch
policies, you just modify your existing password to fit the new policy?? (This seems like a
bad way to model this) The payoff matrix for switching between X; and X5 is thus:

[ H(Xy)/N  D(X1 || Xz)}
D(Xy || Xy)  H(Xs)/N

where H(X)/N is the entropy rate. On the attacker side, let’s say brute force works with
free choice but not the strict policy. Let’s say social engineering works 50% of the time, and
let’s say stalking your target works 70% with the strict policy (they are more likely to write
down a clue) and 20% with free choice. We thus define P,’s matrix

0 05 0.7
P= [1 0.5 0.2}

P, has no clue about P,’s matrix. Their matrices would be of the form

_ Ha(Xl) Ha(Xl) Ha<X1)
Ma = [Hao@) Ho(Xo) Ha<xz>] |

For P,’s memorability R = M; we have Shannon entropy H(X;) = 17.39 and H(X;) =
14.22. However, for Py’s guess-ability G = M, we have min-entropy H.,(X;) = 17.39 but
Ho(X3) = 11.69. The payoft for P, is thus A; = P o R (where o represents element-wise
multiplication of the matrices), and the payoff for P, is Ay = P o G. Using these payoff
matrices A to solve the linear program which I did not understand yields that we should
use 71% X; and 28% X, (if we give 60% weight to memorability, 20% to guess-resistance,
and 20% to switching costs). If we use 70% guess-resistance, 10% memorability, and 20%
switching cost, we get 41% X; and 59% X, (this seems backwards?).
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