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1 Counting & Probability

1.1 Intro & Counting (2024.08.19)

Info Src Transmit Receive Dest
Channel

(+ Noise)

• Information sources can be modeled as random variables, probability distributions
(LLMs and ChatGPT model language this way).

• Fundamental Counting Principle (for consecutive choices): If one event can occur
in n ways and a 2nd event can happen in m ways after event one, there are m×n total
possibilities.

• Subsets of a set: A set of n elements contains 2n subsets.

– For each element of a set, it can either be in the subset or not. 2 possibilities for
each of the n elements results in 2n possibilities.

• Permutations: There are n! permutations of a set of n elements.

• Distinguishable Permutations: Suppose a set of n objects has k distinguishable
kinds of objects (e.g. a set of 4 As, 2 Bs, etc.), such that there are n1, n2, . . . nk items
in each of the k groups, respectively, with n1 + n2 + · · ·+ nk = n Then the number of
ways to arrange the objects is

n!

n1!n2! · · ·nk!

•
P (n, r) =

n!

(n− r)!

•
C(n, k) =

(
n

k

)
=

n!

k!(n− k)!

• Additional reading: Stirling Numbers of the Second Kind
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1.2 Probability (2024.08.21)

Sample Space: Set of all possible outcomes called S.

Axioms: Let E be the event of interest.
The complement (the event of E not happening) is denoted Ec

0 ≤ P (E) ≤ 1

P (S) = 1

Probability of E1 or E2: P (E1 ∪ E2) = P (E1) + P (E2)− P (E1 ∩ E2)

Mutually exclusive: E1 ∩ E2 = ∅.
Not to be confused with ”independent”: If events are mutually exclusive, they are com-

pletely dependent on each other (E1 happening means E2 did not happen).
If E1 and E2 are independent, then P (E1 ∩ E2) = P (E1) · P (E2)

1.2.1 Exercises

Exercise 1: 3 balls are drawn from a bowl of 3 white, 5 black without replacement. What
is the probability that 1 ball is white and 2 balls are black?

3

[
6 · 5 · 4
11 · 10 · 9

]
=
C(6, 1)C(5, 2)

C(11, 3)

Exercise 3: 5-card hand in poker, P(straight)?

10 (45 − 4)

C(52, 5)

1.3 Discrete Random Variables (2024.08.23)

1.3.1 Random Variable:

Mapping from sample space S to real numbers R. Denoted by later capital letters.

Exercise 1: Toss 3 fair coins, then Y: # of heads
y P (Y = y)
0 1/8
1 3/8
2 3/8
3 1/8

Describes a discrete Probability Mass Function (vs a continuous Probability Den-
sity Function, PDF).
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Exercise 2: Choose 3 balls randomly selected without replacement from an urn of 20 balls,
numbered in order.

P (X = i) =

(
i− 1

2

)/(
20

3

)
1.3.2 Cumulative Distribution Functions (CDFs)

Let F be a (discrete) cumulative distribution function and P be the probability mass func-
tion. F approaches 1 as a→ ∞.

F (a) =
∑
x≤a

P (x)

1.3.3 Expected Value

The expected value of a random variable is given by:

E[X] =
∑
x∈S

xP (X = x)

Exercise 4: For a fair die,

E[X] =
6∑

i=1

i
1

6
= 3.5

Notice that E[X] ̸∈ S.

Exercise 5: Let A be an event with probability P [A]. Let

I =

{
1 A occurs

0 Ac occurs.

Then, E[I] = P [A].
x P (X = x)
-1 0.2
0 0.5
1 0.3.

Notice: E[X2] = 0.5. However, E[X]2 = 0.01

1.3.4 Functions of Random Variables:

If g(X) is a function of the random variable, then

E[g(X)] =
∑
x∈S

g(x)P (X = x).

Proof : Let G be the image (i.e. range) of g(X). Then,
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E[g(X)] =
∑
y∈G

∑
x∈S,g(x)=y

g(x)P (X = x)

=
∑
y∈G

y
∑

x∈S,g(x)=y

P (X = x)

=
∑
y∈G

yP (g(x) = y).

Thus, we have the Linearity of Expectation

E[aX + b] = aE[X] + b

Variance:
Var[X] = E

[
(X − µ)2

]
,

where µ = E[X]. As a result, by expanding and the linearity of expectation,

Var[X] = E[X2]− E[X]2.

Var[aX + b] = a2 · Var[X].

Also, stdev=
√
Var

1.4 Discrete Random Variables 2 (2024.08.27)

• Bernoulli Random Variable: 1 with probability p and 0 with probability 1− p.

E[X] = p Var[X] = E[X2]− E[X]2 = p− p2

• Binomial Rand Var: Sum of n independent Bernoulli random variables, each with
probability p of being 1. In other words, X is the number of successes in the n trials.

P (X = k) =

(
n

k

)
pk(1− p)n−k

E[X] = np Var[x] = np(1− p)

When p = 0.5, it is symmetrical about the halfway point: P (X = k) = P (X = n− k)

Exercise 1: A player bets on a number from 1-6 and 3 dice are rolled. If the number
betted on appears i times for i ∈ {1, 2, 3}, then they win i units, otherwise losing 1
unit.

E[X] = −1 ·
(
3

0

)(
1

6

)0(
5

6

)3

+ 1 ·
(
3

1

)(
1

6

)(
5

6

)2

+ 2 ·
(
3

2

)(
1

6

)2(
5

6

)
+ 3 ·

(
3

3

)(
1

6

)3(
5

6

)0

= − 17

216
< 0.

So it is unfair.
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Exercise 2: An airplane engine fails in flight with a probability of 1− p. If at least
50% of engines work, then the airplane is successful. For what values of p is a 4-engine
plane better than a 2-engine plane?

P [X4 < 2] =

(
4

0

)
(1− p)4 +

(
4

1

)
p(1− p)3

P [X2 < 1] =

(
2

0

)
(1− p)2.

Then,

P [X4 < 2]− P [X2 < 1] = (1− p)2((1− p)2 + 4p(1− p)− 1)

= (1− p)2(p2 − 2p+ 1− 4p2 + 4p− 1)

= (1− p)2(−3p2 + 2p)

= p(p− 1)2(−3p+ 2).

So, P [X4 fails] > P [X2 fails] when p < 2
3
, in which case the 2-engine plane is better.

Otherwise, when p > 2
3
, a 4-engine plane is better.

Exercise 3: LetX be a binomial random variable. Then, what are E[X] and Var[X]?

E[X] =
n∑

k=1

E[Xk]

=
n∑

k=1

p

= np,

where Xk is Bernoulli. Also, for independent events E[XY ] = E[X]E[Y ], so:

Var[X + Y ] = E[(X + Y )2]− E[X + Y ]2

= E[X2] + E[Y 2] + 2E[XY ]− E[X]2 − E[Y ]2 − 2E[X]E[Y ]

= Var[X] + Var[Y ] + 2(E[XY ]− E[X]E[Y ])

= Var[X] + Var[Y ],

so

Var[X] =
n∑

k=1

Var[Xk]

=
n∑

k=1

p(1− p)

= np(1− p).
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1.5 More Random Vars (2024.08.29)

1.5.1 Poisson Random Variables

P (X = k) = e−λλ
k

k!
k ∈ Z≥0, λ ∈ R

Models the probability an event happens X times if it has a probability p of happening
every time interval, over the time period of n intervals in the continuous limit as n → ∞
and λ = np is a sensible rate. That is, the continuous process where the event has some
infinitesimally small probability of happening every instant, yielding a reasonable overall
rate of the event happening.

Examples https://en.wikipedia.org/wiki/Poisson_point_process. The number of
misprints in a page of a book, the number of people entering a queue in a fixed period of
time. This distribution can be constructed from binomial distributions:

X : Binomial rand var (n, p)

λ = np (n→ ∞, p→ 0)

We have

P (X = k) =
n!

(n− k)!k!
pk(1− p)n−k

=
n!

(n− k)!k!

(
λ

n

)k (
1− λ

n

)n−k

=
n(n− 1) · · · (n− k + 1)

nk

λk

k!

(
1− λ

n

)n(
1− λ

n

)k .
Applying the facts that:

lim
n→∞

(
1− λ

n

)n

= e−λ,

lim
n→∞

(
1− λ

n

)k

= 1,

lim
n→∞

n(n− 1) · · · (n− k + 1)

nk
= 1,

we have

P (X = k) → e−λλ
k

k!
.

Let an item be defective with probability 0.1. Then, sample 10 items and calculate
P (at most 1 defective item). Binomial:(

10

0

)
(1− p)10 +

(
10

1

)
p(1− p)9 ≈ 0.7361.

9
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Poisson: λ = 10 · 0.1 = 1,
e−1 · 10

0!
+
e−1 · 11

1!
≈ 0.7358.

E[X] =
∞∑
k=0

λe−λλ
k

k!

= λe−λ

∞∑
k=0

λk

k!

= λe−λeλ

= λ.

Also,
Var[X] = E[X2]− E[X]2 = λ.

(do the math yourself)
Poisson variables can model the probability of an event happening k times at a constant

rate of λ in a continuous interval of time/space. In this case, sometimes a Poisson R.V. is
written as

e−λt (λt)
k

k!
,

where t is the time/space interval.
Exercise: Let an earthquake happen at an average rate of

λ =
2

week
.

Then,

P (at least 3 earthquakes in 2 weeks) = 1− (P (0) + P (1) + P (2)).

We have:
P (0) = e−λt = e−4,

P (1) = e−λtλt

1!
= 4e−4,

and

P (2) = e−λt (λt)
2

2!
= 8e−4.

1.5.2 Geometric Random Variables

Given p probability of success, X is the number of trials until the first success.
Then,

P (X = k) = (1− p)k−1p, k ∈ Z>0.
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And,

E[X] =
∞∑
k=1

k(1− p)k−1p

=
p

1− p

∞∑
k=1

k(1− p)k

=
p

1− p

1− p

p2

=
1

p
.

1.6 Continuous Random Variables (2024.09.03)

1.6.1 Summary of Discrete R.V.

Know Expected Value and Variance:

• Bernoulli (1 with probability p, 0 otherwise)

X =

{
0 (1− p)

1 p,

E[X] = p Var[X] = (1− p)p

• Binomial (sum of n Bernoulli)

X =
∑
n

XBernoulli(p)

P (X = k) =

(
n

k

)
pk(1− p)n−k

E[X] = np Var[X] = n(1− p)p

• Poisson (# of occurrences with infinitesimal probability of happening every instant)

X = lim
n→∞

XBinomial(n,p=λ
n
)

P (X = k) =
e−λ(λ)k

k!
=
e−λt(λt)k

k!

E[X] = λ Var[X] = λ

• Geometric
P (X = k) = (1− p)k−1p

E[X] =
1

p
Var[X] =

1− p

p2

11



Extra ones for fun:

• Negative Binomial Random Variables

How many trials necessary to get k successes?

P (X = n) =

(
n− 1

k − 1

)
pk(1− p)n−k, k ∈ {r, r + 1, . . . }.

Geometric R.V. is case where k = 1.

• Hypergeometric Random Variable: m white balls, N−m black. Number of white balls
out of n chosen.

P (X = k) =

(
m
k

)(
N−m
n−k

)(
N
n

) , k ∈ {0, 1, . . . , n}.

As N → ∞, approaches Binomial/Poisson

• look at Zeta distribution

1.6.2 Continuous Random Variables

P (a ≤ X ≤ b) =

∫ b

a

f(x) dx,

where PDF(x) is called the probability density function (pdf). Also,∫
S
f(x)dx = usually

∫ ∞

−∞
f(x) d(x) = 1.

is this a lebesgue integral lol
Importantly, the height of a pdf isn’t a real probability since there are infinite values (and

thus a single value has a probability of zero in some sense), so P (X = k) is nonsensical (or
the probability is 0, but the event can still occur). What you can measure is the probability
that X is in a specific region.

Exercise 1

f(x) =

{
C(4x− 2x2) 0 < x < 2

0 otherwise.

The total probability is

1 =

∫ 2

0

C(4x− 2x2)dx = C

(
2x2 − 2

3
x3
) ∣∣∣∣2

0

= C

(
8− 16

3

)
,

so

C =
3

8
.

Then,

P (X > 1) =

∫ 2

1

f(x)dx =
3

8

∫ 2

1

f(x)dx =
1

2
.
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Exercise 2 The amount of time in hours that a computer functions before it breaks down
is given by

f(x) =

{
λe−x/100 x ≥ 0

0 x < 0∫
S
f(x) dx = 1

∴ λ = 1/100

P (50 < X < 150) =

∫ 150

50

f(x) dx = e−1/2 − e−3/2.

Exercise 3 Lifetime in hours of a certain light bulb is a random variable with pdf

f(x) =

{
0 x ≤ 100
100
x2 x > 100

P (Exactly 2 of 5 replaced in 150 hours) =

(
5

2

)
p2(1− p)3,

where

p =

∫ 150

100

f(x) dx =
1

3
.

So,

P (Exactly 2 of 5 replaced in 150 hours) =
80

243
.

Cumulative Distributions: Cumulative distribution function F (x) is the probability
that the random variable is less than x:

F (x) =

∫ x

−∞
f(t) dt.

Going the other way,
d

da
F (a) = f(a).

Exercise 4 Let X have pdf fX(x), and Y = 2X. Letting

FY (a) = P (Y ≤ a)

and
FX(a) = P (X ≤ a),

we have
P (2X ≤ a) = P (X ≤ a/2) = FX(a/2),

so, by chain rule,

fY (a) = fX(a/2) ·
1

2
.
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Expected value ∫
S
xf(x) dx,

E[g(X)] =

∫
S
g(x)f(x) dx.

Variance

E[X2]− E[X]2 =

∫
S
x2f(x) dx−

(∫
S
xf(x) dx

)2

.

Exercise 5 Given uniform random variable

f(x) =

{
1 0 ≤ x ≤ 1

0 otherwise,

then

E
[
eX
]
=

∫ 1

0

ex dx = e− 1.

Now, let Y = eX . Find fY . We have

FY (a) = P (Y ≤ a) = P (eX ≤ a) = P (X ≤ log(a)) = Fx(log(a)).

By chain rule,

fy(a) =
fx(log(a))

a
=

{
1
a

1 ≤ a ≤ e

0 otherwise
.

1.6.3 Continuous Distributions

Uniform Random Variables

f(x) =

{
1 0 < x < 1

0 otherwise

or

f(x) =

{
1

β−α
α < x < β

0 otherwise
.

E[X] =
β + α

2
Var[X] =

1

12
(β − α)2

14



1.7 More Continuous Random Variables (2024.09.05)

1.7.1 Gaussian Distribution & Central Limit Theorem

f(x) =
1√
2πσ

e−(x−µ)2/(2σ2) x ∈ R.

E[X] = µ Var[X] = σ2

Ignore this:
N (µ1, σ

2
1) ∗ N (µ2, σ

2
2) = N

(
µ1 + µ2, σ

2
1 + σ2

2

)
According Laplace, binomial distributions approach a Gaussian distribution as n → ∞.

X being a random variable from a normal/gaussian distribution is written as X ∼ N (µ, σ2).
Do the Gaussian integral by squaring and using polar:∫ ∞

−∞
e−x2

dx =
√
π,

it follows that f(x) is normalized with u-sub. By integrating, letting X ∼ N(0, 1), then

E[X] = 0,Var[X] = 1.

Then, let
Y = aX + b,

E[Y ] = µ,

and
Var[Y ] = σ2.

Exercise 1 Let us transmit a binary message (0 or 1) from point A to point B. If I want
to send a 1, I send a signal of height 2, and if I want to send a 0, I send a signal of height
-2. However, this signal might become disturbed by noise. So, you will receive

R = x+N.

If R ≥ 0.5, we assume that 1 was sent, otherwise we assume a 0 was sent. Let N be
distributed with N(0, 1). If I send a 1, then

R1 ∼ N(2, 1),

so
P [fail1] = P [R1 < 0.5] ≈ 0.0067.

If I send a 0, then
R2 ∼ N(−2, 1)

P [fail2] = P [R2 ≥ −0.5] ≈ 0.0730.

Then,

P [fail =
1

2
(P [fail1] + P [fail2]) ≈ 0.0365.
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1.7.2 Exponential Distribution

f(x) =

{
λe−λx x ≥ 0

0 x < 0

E[X] = λ−1 Var[X] = λ−2

Models the amount of time that passes before an event happens. The relationship between
Exponential and Poisson is the same as the relationship between Geometric and Binomial.

More precisely, the probability that the event happens at least once after time t in a
Poisson process with rate λ is 1 - probability it never happens:

1−
0∑

k=0

e−λt (λt)
k

k!
= 1− e−λt

Which equals exactly the CDF of the corresponding exponential distribution! The CDF
evaluated at t has the interpretation of ”the probability the event happened at least once
between t=0 and now”, which matches up with our calculation from the Poisson distribution.∫ t

0

λe−λx dx = 1− e−λt

2 Information

2.1 Intro to Information (2024.09.11)

Data In Encoder Decoder Data Out
Channel

(+ Noise)

Mathematical formalism: “Data In” is the information source (random variable), and
the data is a sequence of k symbols where each symbol is the outcome of a random variable.

S : {s1, s2, . . . , sk}.

Encoder acts on blocks of symbols (vectors) and does x⃗ = g(s⃗). The encoder’s output is a
sequence of codewords, which is modeled as another random variable with m different values

X : {x1, x2, . . . , xm}

In transit, noise may be added to the codewords, and this noise is another random variable.
The decoder undoes what the encoder did and may also try to correct for noise and errors.

16



2.1.1 Shannon’s Axioms

• Continuity: The amount of information associated with an outcome increases/decreases
smoothly (is continuous) as the probability of the outcome changes.

• Symmetry: The amount of information associated with a sequence of outcomes does
not depend on the order in which the outcomes occur.

• Maximal Value: The amount of information associated with a set of outcomes cannot
be increased if those outcomes are already equally probably.

• Additive: The information associated with a set of outcomes is obtained by adding the
information of individual outcomes. Info(1 and 2 and 3) = Info(1) + Info(2) + Info(3)

Information measures amount of surprise, e.g. if a coin that lands on heads 90% of the
time ends up landing on tails, then you are surprised. So we guess that the surprise amount
is 1/p. But, if p = 1 then surprise is 1 (which should be zero) and this isn’t additive, so we
take the log2 :

log2

(
1

p

)
.

Assume that all logs are base 2 from here on.

h(x) = − log(p(x))

Units are bits (this is not a regular cs bit that you nerds know). One bit is the amount of
information required to choose between 2 equally likely outcomes. A binary digit (computer
science bit), on the other hand, is the value of a binary variable, which is zero or one.

We are interested in the expected/average amount of surprise from an event:

X : {x1, x2, . . . , x,} P (X) : {P (x1), P (x2) . . . , P (xm)}

H(X) =
m∑
i=1

P (xi) log

(
1

P (xi)

)
= E

[
log

(
1

P (X)

)]
.

H(x) is the entropy of the random variable.

2.1.2 Properties of Entropy

• H(X) ≥ 0.

• Hb(X) = logb a ·Ha(X).

• Doubling the number of outcomes increases H(X) by one bit. (Equivalent to flipping
a coin + doing the original thing, counting heads + outcome and tails + outcome as
different outcomes).

17



2.2 Entropy Properties (9.13.2024)

H(X) =
∑

P (X) log

(
1

P (X)

)
.

Example 1 Fair die with 8 sides.

H(X) =
8∑

i=1

1

8
log(8) = 3.

Example 2 Let

X =


a p = 1

2

b p = 1
4

c p = 1
8

d p = 1
8
.

H(X) =
1

2
log(2) +

1

4
log(4) +

1

8
log(8) +

1

8
log(8)

=
1

2
+

1

2
+

3

8
+

3

8
=

7

4
.

Example 3

X =

{
1 p

0 1− p

H(p) := H(X) = −p log(p)− (1− p) log(1− p)

H(p) is maximized when p = 1
2
with H

(
1
2

)
= 1. At the endpoints H(0) = 0 and H(1) = 0

because you get no information from certain outcomes.

2.2.1 Jensen’s inequality

f(x) is convex over the interval (a, b) if for every x1, x2 ∈ (a, b) and any 0 ≤ λ ≤ 1, then

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2).

If f(x) is convex, then −f(x) is concave and obeys the opposite inequality.
Jensen’s inequality states that if f(x) is convex over the sample space of X and X is a

random variable, then
E[f(X)] ≥ f(E[X]).

https://en.wikipedia.org/wiki/H%C3%B6lder%27s_inequality
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“Proof” Why is this true? If g(x) is convex then for some x1 < c < x2, then for all
x ∈ [x1, x2] we have

g(x) ≥ g(c) + g′(c)(x− c).

Letting c = E[X], we have

g(X) ≥ g(E[X]) + g′(E[X])(X − E[X]).

Taking the expectation of both sides,

E[g(X)] ≥ E[g(E[X])] + g′(E[X])E[X − E[X]] = g(E[X]).

https://journalofinequalitiesandapplications.springeropen.com/counter/pdf/10.

1186/s13660-016-0985-4.pdf

Exercise 1 We know that

E[X2] = Var[X] + E[X]2 =⇒ E[X2] ≥ E[X]2.

This is just Jensen’s!!!!!

Exercise 2 f(x) = − log(x) is convex:

E[− logX] ≥ − log(E[X]).

logE[X] ≥ E[logX].

2.2.2 Theorem

Let X be an R.V. with values {x1, x2, . . . , xr}. Prove that

0 ≤ H(X) ≤ log r,

and H(X) = 0 if all the pi ∈ {0, 1}. Since each pi ≤ 1, we have

pi log

(
1

pi

)
≥ 0 =⇒ H(X) ≥ 0,

and

pi log

(
1

pi

)
⇐⇒ pi = 0 or pi = 1,

so H(X) = 0 iff each pi ∈ {0, 1}.
We have, letting Y = 1

pi
with probability pi,

H(X) =
∑
i

pi log
1

pi
≤ log

∑
i

pi
1

pi
= log r,

applying Jensen’s with − log and Y. When pi =
1
r
, equality occurs, for example.
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Exercise π Let

A =
∞∑
n=2

(
n log2 n

)−1
,

and let X be a Random Variable such that

P (X = n) =
1

An log2 n

for n = 2, 3, . . . Prove that H(X) = ∞.

H(X) =
1

A

∞∑
i=2

1

n log2 n
log(An log2 n)

≥ 1

A

∞∑
i=2

log n

n log2 n

=
1

A

∞∑
n=2

1

n log n
= ∞.

Exercise 3 Given (p1, p2, . . . , pn) and some m with 0 ≤ m ≤ n, define

qm = 1−
m∑
j=1

pj.

Prove that
H(p1, p2, . . . , pn) ≤ H(p1, p2, . . . , pm, qm) + qm log(n−m).

H(p, ≤ H(q) + q log(r)
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2.3 Differential Entropy (2024.09.17)

Agastya’s 13b solution: From 13a, we know that this is just barely possible: At max-
imum the scale gives us log2(3) bits of entropy (from reading left heavy, right heavy, or
equal), and the problem to be solved has log2(2 · 12 + 1) bits of entropy. The counterfeit
could be any of the 12 coins, either heavier of lighter, or there might not be a counterfeit.
3 log2(3) = 4.75 while log2(2 ·12+1) = 4.64! We only have about 0.1 bits of entropy to spare
(27 possibilities vs. 25)!

Strategy: Find the number of coins to weigh by considering what will give you the
maximum entropy. The probabilities that the scale reads equal, left side heavy, and right
side heavy should all be as close to 1/3 as possible. We must also then use the information
about which side was heavier from all weighings.

• Weigh 4v4. In the case they are equal, these 8 are known good. Then,

– Weigh 3 known good vs. 3 unknown. If equal, counterfeit must be the one left
out (if there is a counterfeit). Weigh that one left out coin with a known good
coin to see if it is counterfeit.

∗ If the unknown coins are heavier or lighter, we know one is counterfeit and
that the counterfeit is heavier or lighter correspondingly. Weigh 1 of the 3
unknowns against another of the 3 unknowns. If equal, the 3rd unknown is
counterfeit, and if unequal, counterfeit is the one agreeing with the previous
weighing.

• If the 4v4 was unequal, a counterfeit exists. Let’s denote the 4 heavier coins as HHHH
and 4 lighter as LLLL and 4 known good coins as CCCC. Weigh LLHHH vs. HCCCC

– if LLHHH > HCCCC, one of the 3 Hs on the left-hand-side is a heavy counter-
feit. Weigh 2 of them in a 1v1 and see which is heavier (if equal, the one left out
must be heavier).

– if LLHHH = HCCCC, counterfeit is light and is one of the 2 Ls we left out. Do
a 1v1 to see which is the lighter counterfeit.

– If LLHHH < HCCCC, counterfeit is either one of the 2 Ls on the left-hand-side
or the H on the right-hand-side. Weigh the 2 Ls in a 1v1 to see if one is the lighter
counterfeit. If they are equal, the heavy one must be the counterfeit.

2.3.1 Differential Entropy

We have

H(X) =
∑

p(X) log
1

p(X)
.

Just like in a Riemann sum, we will split a continuous distribution into many “bins” of width
∆x.

P (random value X is in a given bin) = proportion of all values in that bin.
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Define
X∆

to be the discretized version of X, which is a continuous R.V. We have

H
(
X∆
)
=
∑
i

P (X ∈ bini) log
1

P (X ∈ bini)
.

The probability of X being in the ith bin is the ratio between ai, which is the the area of
the ith bin, to the total area A :

ai = ni∆x, A =
∑

ai, Pi =
ai
A
,

∑
Pi = 1.

We have
Pi = P (xi)∆x.

H
(
X∆
)
=
∑

Pi log
1

Pi

=
∑

P (xi)∆x log
1

P (xi)∆x

=
∑

P (xi)∆x log
1

P (xi)
+
∑

P (xi)∆x log
1

∆x
.

Taking the limit, we get ∫
P (x) log

1

P (x)
dx+ log

1

∆x

∫
P (x) dx.

Unfortunately, this goes to negative infinity... So, Differential Entropy is necessary, which
would yield

h(X) =

∫
f(x) log

1

f(x)
dx,

where f(x) is the pdf of X. (we just ignore the second term lol)
Properties:

• If Y = X + c, then hy = hx.

• If Y = cX, then hy = hx + log c.

Example 1 Let X ∼ U(0, a). Then

h(X) =

∫ a

0

1

a
log a = log a.

If you double the sample size, then h increases by 1, just like discrete entropy.
Since h can be negative, we treat it with respect to U(0, 1) as h(X ∼ U(0, 1)) = 0. We

treat h to mean having more or less information than U(0, 1).
Differential entropy of an exponential distribution:

h(X) = −
∫ ∞

0

λe−λx log(λe−λx) dx = log
( e
λ

)
Claim:
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• Given a fixed lower and upper bound, a no pdf has a larger entropy than a uniform

• Given a positive R.V. X with a mean µ, then the distribution with maximum entropy
is an exponential random variable.

2.4 More Entropy (9.19.2024)

2.4.1 Aarush Integrates Simplices

Probability Tuples: First, we must define the object we are working with.

Definition We define a probability tuple of size n and total probability a as a real tuple
pn,a = (p1, . . . , pn) where 0 ≤ a ≤ 1, and 0 ≤ pi ≤ 1 for integers 1 ≤ i ≤ n, and

∑n
i=1 pi = a.

We need some method to count probability tuples.

Definition We denote the number (measure) of valid probability tuples pn,a as the number
S(n, a).

Note that S(1, a) = 1, since the only tuple is (a). Similarly, S(2, a) = a, since p1 can be
any value from 0 through a and p1 uniquely fixes p2. Moreover, for n ≥ 2, note that there
is a bijection between pn,a, and the space of probability tuples pn,b as b varies from 0 to a.
More specifically,

S(n, a) =

∫ a

0

S(n− 1, a− x) dx =

∫ a

0

S(n− 1, x) dx.

Using this equation we get that

S(n, a) =
an−1

(n− 1)!
.

We define a random variable Xn = (x1, . . . , xn) to be a random probability tuple pn,1,
where Xn is equally likely to be every distinct probability tuple. Our goal is to find the
probability distribution for P (x1 = k) for some 0 ≤ k ≤ 1.

To do this, we will find the cumulative probability distribution by finding the probability
P (x1 ≤ k). Say a tuple pn,a has p1 ≥ k. Then, we can subtract k from p1 to get a probability
tuple p′

n,a−k. In other words, there is a bijection between these two objects. Thus, to count
the tuples pn,a where p1 ≤ k, we can use complementary counting, which then gets the
cumulative distribution of

P (x1 ≤ k) =
S(n, 1)− S(n, 1− k)

S(n, 1)
= 1− (1− k)n−1,

The S(n, 1 − k) counts the number of probability tuples where we can add k to one of the
probabilities p1 < 1 − k so that the tuple sums to 1, so S(n, 1 − k) counts the number of
n-tuples summing to 1 where p1 > k. Alternatively, we can integrate over all possibilities for
p1 < k and write this as

P (x1 ≤ k) =
1

S(n, 1)

∫ k

0

S(n− 1, 1− p) dp = 1− (1− k)n−1.
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Thus, we can calculate the probability distribution function as

P (x1 = k) =
d

dk
P (x1 ≤ k) = (n− 1)(1− k)n−2.

Expected Information: LetH(x) = −x log2(x), andH(x1, . . . , xn) =
∑n

i=1H(xi). Then,
the expected amount of information from a probability distribution is

E(H(Xn)) = E

(
n∑

i=1

H(xi)

)
=

n∑
i=1

E(H(xi)) = n · E(H(x1))

= n ·
∫ 1

0

P (x1 = k) ·H(k) dk

= −n(n− 1) ·
∫ 1

0

(1− k)n−2 · k · log2(k) dx,

which we simplify using Mathematica to get

E(H(Xn)) =
Hn − 1

ln(2)
,

where Hn =
∑n

i=1
1
i
.

2.4.2 Funny Discrete Problem

Go back to discrete: Given (p1, p2, . . . , pn) and some m with 0 ≤ m ≤ n, define

qm = 1−
m∑
i=1

pi =
n∑

i=m+1

pi.

Prove that
H(p1, p2, . . . , pn) ≤ H(p1, p2, . . . , pm, qm) + qm log(n−m).

H(pm+1, . . . , pn) ≤ H(qm) + qm log(n−m)

Let

z = H(pm+1, . . . , pn) =
n∑

i=m+1

pi log

(
1

pi

)
Divide by qm :

z

qm
=

n∑
i=m+1

pi
qm

log

(
1

pi

)
Add log qm :

z

qm
+ log qm =

n∑
i=m+1

pi
qm

log
qm
pi
,

let this be H(Y ). Then,

z = H(pm+1, . . . , pn) = qm(H(Y )− log qm).
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But, we have H(Y ) ≤ log(n−m) from maximal entropy, so

qm(H(Y )− log qm) ≤ qm log
1

qm
+ qm log(n−m),

and thus
H(p1, p2, . . . , pn) ≤ H(p1, p2, . . . , pm, qm) + qm log(n−m).

2.4.3 Differential Entropy of Gaussian R.V.

f(x) =
1√
2πσ2

e−x2/2σ2

.

h(X) = − 1

ln 2

∫ ∞

−∞
f(x) ln f(x) dx

= − 1

ln 2

∫ ∞

−∞
f(x)

(
− x2

2σ2
− ln

√
2πσ2

)
= − 1

ln 2

(
−E[X2]

2σ2
− ln

√
2πσ2

)
= − 1

ln 2

(
−E[X2]

2σ2
− 1

2
ln 2πσ2

)
.

But, E[X2] = σ2 + µ2 = σ2, so

h(X) =
1

2 ln 2

(
1 + ln 2πσ2

)
=

1

2
log2(2πeσ

2).

2.4.4 Source Coding

Source → message → Encoder → signal
We want a code for English text because america, specifically, we want a scheme to map

letters to a sequence of 0’s and 1’s.
A 00000
B 00001
C 00010
...

. . .
This uses 5 bits, but it is bad.

Exercise 1 Let E = 0, T = 1, A = 01, but A=ET????!?!???!? bad

Exercise 3 Now try E = 1, T = 011, A = 1110, O = 10011, I = 01110,
But now 011101110011 is both IAT and TEIT, so decoding is not unique.

Exercise 3 Let E = 0, T = 10, A = 110, O = 111.
Now, 00100110111010 is uniquely EETEAOET.
The difference between the second and third encodings is that no code in the third

encoding has a prefix equal to another code.
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2.5 Lagrange & Source Coding (9.23.2024)

2.5.1 Review

We want a uniquely decodable code better than 5 bits per letter that is also instantaneous
(like a DFA), otherwise known as prefix-free.

We call a code non-singular if every element in X maps to a different string. So

xi ̸= xr =⇒ C(xi) ̸= C(xj).

We call a code uniquely decodable if any decoded string has only one possible source
string that produced it.

We call a code a prefix code or an instantaneous code if no codeword is the prefix of any
other codeword.

Instantaneous codes are a subset of uniquely decodable codes, which are a subset of non
singular codes, which are a subset of all codes. Example:

X Singular
Nonsingular but

not uniquely decodable
Uniquely Decodable
but not Instantaneous

Instantaneous

1 0 0 10 0
2 0 010 00 10
3 0 01 11 110
4 0 10 110 111

Exercise 1

X =

Number Probability Code
1 1/2 0
2 1/4 10
3 1/8 111
4 1/8 111

We see that H(X) = 1.75 bits and E[length] = L(C) = 1.75.

Exercise 2

X =

Number Probability Code
1 1/3 0
2 1/3 10
3 1/3 11

We see that H(X) = log(3) bits and L(C) = 5
3
bits. Note that

H(X) ≈ 1.585 < L(C) ≈ 1.667.

2.5.2 Huffman Code

This is a way to encode any source with an probability distribution into bits. In short, the
more probable a word is, the fewer bits its codeword has. Algorithm:

• Find the two least probable symbols (e.g., letters)
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• Combine the two letters to make an imaginary composite symbol. This composite has
a probability of the sum of the probabilities of each event.

• Repeat this process until you have one symbol left.

• For every time you combine two symbols, assign the top path with a 1 and the bottom
path with a zero

• Make it a tree by concatenating binary numbers the lead to that symbol.

Exercise 3

A 0.87 (1)

1.00 (root)
B 0.04 (1)

0.08 (1)
0.13 (0)

C 0.04 (0)
D 0.03 (1)

0.05 (0)
E 0.02 (0)

The two least probable symbols are D and E, so make DE with probability 0.05. Then we
combine B and C with the lowest probabilities of 0.04 and 0.04 to make BC with probability
0.08. Continue this, and make a tree

2.5.3 Lagrange Multipliers and (Constrained) Optimization

The problem: Maximize scalar function f(v⃗) under the constraints ci(v⃗) = 0.
Solution: Solve for ∇f(v⃗) =

∑
i λi∇ci(v⃗). The values of the λi do not matter, only the

value of v⃗.
If the gradient of f does not lie purely in the space spanned by the gradients of the

constraints, then we can always increase f by moving along the constraint manifold (moving
along the constraint manifold = moving in a direction perpendicular to the gradients of the
constraint functions, think about contours of constant value). Adding constraints removes
constraints on the gradient of f .

Exercise 4 Maximize f(x, y) = 3x + 4y with g(x, y) = x2 + y2 − 1 = 0. We turn this
constrained problem into an unconstrained maximum of a new function ϕ(x, y, λ). Definition:

ϕ(x, y, λ) = f(x, y)− λg(x, y).

The gradient is

∇ϕ(x, y, λ) =

∂f
∂x

+ λ ∂g
∂x

∂f
∂y

+ λ∂g
∂y

g(x, y)

 = 0⃗.

So,  3 + 2λx
4 + 2λy

x2 + y2 − 1

 = 0⃗.

So, 4λ2 = 25, and thus λ = ±5
2
. Then,

x =
3

5
, y =

4

5
.
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Exercise 5 Optimize f(x, y, z) = xyz given x2 + y2 + z2 = 12. We have
yz + 2λx
xz + 2λy
xy + 2λz

x2 + y2 + z2 − 12

 = 0⃗.

So,
x = y = z = 2.

2.6 Lagrange 2 (9.30.2024)

Maximize discrete entropy:

H(p1, p2, . . . , pn) = −
∑
i

pi log pi

Under the constraint function:

C(p1, p2, . . . , pi) = −1 +
∑
i

pi = 0

Lagrange multipliers:

Φ(p1, p2, . . . , pi, λ) = ∇H − λ∇C

=


− log p1 − 1
− log p2 − 1

. . .
− log pn − 1

− λ


1
1
. . .
1

 = 0

Using additional knowledge that 0 ≤ pi ≤ 1, we know that pi =
1
n
, for 1 ≤ i ≤ n, and thus

H = log n.

Continuous Given a continuous distribution that is bounded with

a ≤ x ≤ b,

prove that the uniform distribution maximizes entropy.

We want to maximize ∫
f(x) log

1

f(x)
dx,

given ∫
f(x) dx = 1.

Let

ϕ(f) =

∫
f(x) log

1

f(x)
dx− λ

(∫
f(x) dx− 1

)
.
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Φ
f R

We want to perturb f slightly and see how H(f) changes.
Perturb the range f(x) to f(x+ δ) by ϵ. How much does ϕ change?

Φ(fperturbed)−Φ(f) =

(
(f(x) + ϵ) log

1

f(x) + ϵ
− f(x) log

1

f(x)

)
δ−λ ((f(x) + ϵ)δ − 1− (f(x)δ − 1)) .

After algebra and factoring out a delta,

(f(x) + ϵ) log
1

f(x) + ϵ
− f(x) log

1

f(x)
− λ(f(x) + ϵ− f(x)).

So,

ϵ

(
d

dz
z log

1

z

) ∣∣∣∣
z=f(x)

− λϵ = 0.

So,
f(x) = e−1−λ

is constant, so f is uniform.

Problem Find p0, p1, p2, . . . so that∑
i

pi log
1

pi
+ log∆x

is maximized, given ∑
i

pi∆x = 1

and the mean is contrained: ∑
i

ipi∆x
2 = µ

is constant.
We have

Φ(p1, p2, . . . ,∆x, λ1, λ2) =
∑
i

pi log
1

pi
+log∆x−λ1

(∑
i

pi∆x− 1

)
−λ2

(∑
i

ipi∆x
2 − µ

)
.

Taking the gradient,

∇Φ =



− log p0 − 1− λ1∆x
2

− log p1 − 1− λ1∆x− λ2∆x
2

− log p2 − 1− λ1∆x− 2λ2∆x
2

. . .
− log pi − 1− λ1∆x− iλ2∆x

2

. . .∑
i pi∆x− 1∑

i ipi∆x
2 − µ


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You can solve this, and get

pi =
1

µ
e−x/µ.

3 Source Coding

3.1 Source Coding Theorem (10.2.2024)

Goal: Construct instantaneous codes of minimum expected length. We know that you cannot
assign short codewords to all source symbols if we want the code to still be instantaneous.

3.1.1 Kraft Inequality

m∑
i=1

D−ℓi ≤ 1,

Where D is the alphabet size (e.g., binary codes have D = 2), and the codeword lengths
are ℓ1, ℓ2, . . . , ℓm. Conversely, given a D and ℓi that satisfy this inequality, there exists an
instantaneous code with lengths ℓi.

Proof: Let D = 2 because that’s all we care about honestly. Consider a binary tree, with
each node having 2 children and each branch is a symbol of some codeword. Each leaf is a
codeword (for now).

No prefixes means that no codeword is the descendant of another codeword . Let ℓmax

be the length of the longest set of codewords. Now, grow out the tree to length ℓmax for all
branches. A codeword at level ℓi has

2ℓmax−ℓi

leaf descendants. The leaf descendants of each codeword form m disjoint sets because no
codeword is the descendent of another. The total number of nodes in these leaf descendants
must be at most 2ℓmax , so for we have

∑m
i=1 2

ℓmax−ℓi ≤ 2ℓmax (remember disjoint sets). Thus:

m∑
i=1

2−ℓi ≤ 1.

This same idea works for all D.

3.1.2 Minimum Codeword Length

Minimize expected binary codeword length L =
∑

i piℓi for ℓ1, ℓ2, . . . , ℓm satisfying∑
i

2−ℓi ≤ 1.

Pretend it’s an equality trust me bro.

Φ =
∑
i

piℓi − λ

(∑
i

2−ℓi − 1

)
,
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=⇒ ∂Φ

∂ℓi
= pi + λ2−ℓi ln 2 = 0.

2−ℓi =
−pi
λ ln 2

.

Substitute this into the contsraint that

m∑
i=1

2−ℓi = 1,

m∑
i=1

−pi
λ ln 2

= − 1

λ ln 2
= 1,

λ = log2(e)

and the optimal length
ℓ∗i = − log2 pi.

This means that the average length

L∗ =
∑
i

piℓ
∗
i = H(X)!!!!

Small problem, ℓi should be integral but it’s fine...

3.1.3 Source Coding Theorem:

The expected length L of a binary codeword is greater than or equal to the entropy:

L ≥ H(X),

with equality iff 2ℓi = pi.
Proof:

L−H(X) =
∑
i

pi(ℓi + log pi) =
∑
i

pi(− log2 2
−ℓi + log2 pi) =

∑
i

pi log
pi
ri

− log c,

where

ri =
2−ℓi∑
i 2

−ℓi

and
c =

∑
i

2−ℓi .

Consider now

−
∑

pi log
pi
ri

=
∑

pi log
ri
pi

≤ log
∑

pi
ri
pi

= log
∑

ri = log 1 = 0,

by Jensen. This means that L ≥ H(X).
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3.2 Huffman is Optimal (2024.10.07)

(? rohan please help) Proof that a huffman code achieves optimal avg codeword length
within 1 bit of lower bound:

ℓi =

⌈
log2

1

pi

⌉
Lengths of codewords satisfy Kraft’s inequality (instantaneous code):∑

2−ℓi =
∑

2
−
⌈
log 1

pi

⌉
≤
∑

2
− log 1

pi =
∑

pi = 1

We have

log
1

pi
≤ ℓi ≤ log

1

pi
+ 1

Taking expected value of everything:

H(X) ≤ L ≤ H(X) + 1 ■

Lemma: For any probability distribution (without loss of generality, assume that p1 ≥
p2 ≥ · · · ≥ pm), there exists an optimal instantaneous code (of minimum expected codeword
length) such that

1. If pj > pk, then ℓj ≤ ℓk.

– We consider swapping codewords. Say we have code C ′
m which is Cm but with

the codewords for j and k swapped.

L(C ′
m)− L(Cm) =

∑
piℓ

′
i −
∑

pili

= pjℓk + pkℓj − pjℓj − pkℓk

= (pj − pk)(ℓk − ℓj)

Because Cm is an optimal code, the left-hand side L(C ′
m) − L(Cm) ≥ 0. By

definition, pj − pk > 0, therefore ℓk − ℓj ≥ 0. ■

2. The two longest codewords have the same length and differ only in the last bit.

– Proof by Contradiction: assume that the 2 longest codewords have differing
lengths. Then, we can delete the last bit of the longest and still be instanta-
neous (definition of instantaneous codes) so that code cannot have been optimal.
By property 1, the longest codewords are the least likely symbols.

– Alternatively (thanks Aarush), Kraft’s inequality will hold with equality if a code
is optimal. Therefore,∑

2−ℓi = 1 =⇒
∑

2ℓmax−ℓi = 2ℓmax

The right-hand side is necessarily even, but if there is only one code with the
longest length, the left-hand side will be odd, as that term will be 1 and the rest
will be powers of 2.
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3. And these longest codewords correspond to the two least likely symbols.

– Not all optimal codes have this property, but by rearranging the 0 and 1 labels
on the tree, I can find a code that does satisfy this.

Actual proof stuff: We want to prove that if a code satisfies those properties, it can be
thought of as a Huffman code.

Create a “merged” code Cm−1 with m−1 symbols from Cm as follows: Take the common
prefix of the two longest codewords and allot it to a (fictional) symbol with probability
pm−1 + pm, keeping all other codewords the same. Define pi and ℓi for Cm and p′i and ℓ

′
i for

Cm−1: for 0 ≤ i < m−1, p′i = pi and ℓ
′
i = ℓi. For the two merged symbols, p′m−1 = pm−1+pm

and ℓ′m−1 = ℓm − 1 = ℓm−1 − 1. Thus, removing the 2 longest codewords from an optimal
instantaneous code:

L(Cm) =
∑

piℓi

=
m−2∑
i=1

p′iℓ
′
i + (pm−1 + pm)(ℓ

′
m−1 + 1)

=
m−1∑
i=1

p′iℓ
′
i + (pm−1 + pm)

= L(Cm−1) + pm−1 + pm,

Minimizing L(Cm) is the same as minimizing L(Cm−1) This process of combining the 2
lowest probability symbols is why Huffman works: Repeat the process down to 1 symbol,
and you have created a Huffman tree which is optimal as L(C1) = 0.

4 Guest Speaker: Dr. Subramanian

4.1 Large Language Model: an Information Theory Approach

In 1952, Shannon wrote a paper on the information of the English language, talking about
average entropy and average word length. He figured this out by counting words in a library.

• Bag of words distribution (0th order model): Cut out words of a text, place them in a
bag, and pick them out randomly. Really stupid but a good start. Surprisingly good,
for example sentiment analysis just counts “happy” and “sad” words.

Zipf’s “law:” bag of words plot sorted in decreasing order; looks like 1
n
, this law has

been observed in many different languages.

• Unigram model (1st order model): Words depend on the previous word, so we let the
probability distribution depend on the previous word, so each word corresponds to the
probability distribution of the next word, forming a table. From this, you can generate
text, and this is pretty garbage but not as bad as the 0th order method.
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• Bigram moddel (2nd order model): Each pair of two words correspond to a probability
distribution of the third word. This is better than first model but still pretty garbage.

The English dictionary has about a million words, of which 100k are used often enough.
In the second order case, there are a 1000002 entries in the table.

• ChatGPT is just an n-gram model for n = 32776. Practically, it’s just a table with
32777 columns and 100k rows. Obviously 10000032776 is too ridiculously large to store.
But in reality, the pdfs are pretty sparse, so most words have almost zero probability.
This means that this table is compressible. In order to compress this, companies like
Google managed to compress this to about 1 billion parameters (which is really good
compared to the original size). In short, they made a neural network that takes in 32776
words as an input and outputs a probability distribution: https://arxiv.org/abs/

1706.03762. Then everyone makes a bunch of LLM’s, like Gemini, Llama, GPT, Grok
ai, Claude, etc. But, they all are really the same concept fundamentally, regardless of
what the hype is.

Occam’s Razor: If there are multiple explanations, believe the simplest one, all things
equal. For example, Kepler’s simple laws validated the pages and pages of measurements
that had been made of the positions of the planets, so obviously you should follow Kepler’s
laws. Then, Newton’s law of gravity explains the planets, so you should prefer Newton’s
laws.

In the AI world, we think of underfitting and overfitting. For example, if we have five
equations and three variables, we don’t have enough degrees of freedom (underfitting), while
if we have five equations and seventeen variables, we have too many degrees of freedom
(overfitting). In AI, this is the comparison between the amount of training data and the
amount of parameters. Occam’s razor would say to find the best fit that’s not too simple
(i.e., don’t overfit and don’t underfit). In an LLM, you need to find the right number of
parameters to not overfit or underfit. What industry is doing is increasing the number of
parameters until the model starts overfitting to figure out the optimal LLM.

Four powerhouses of AI: MIT by Minsky, Stanford by McCarthy, CMU by Simon, IBM by
Solomonoff. In the 1980’s, when Reagan became president, people said that you shouldn’t
give funding to “random” people unless for military. Someone that got funding snipped
was Geoffrey Hinton, who was working on the unpopular subject of Neural Networks. The
first neural network was a perceptron, and people knew that two layers are enough given a
large enough hidden layer: https://en.wikipedia.org/wiki/Universal_approximation_
theorem, but people didn’t yet figure out how to train networks with backpropagation,
so people thought hidden layers were pointless. However, Minsky showed that XOR isn’t
possible without a hidden layer, so people thought Neural Networks were useless. So, Hinton
moved to Canada because they are nicer people. He then worked on his own without any
recognition or care that people said it was stupid to work on NN’s. He came up with many
innovations in Neural Networks. He went to the ImageNet competition, and in 2012 he got
96% accuracy which was insane.
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4.1.1 Vision Foundation Models

People are trying to apply LLM techniques to images (vision foundation models), just how
humans can think in both words and images. Instead of looking at each word, think of
“filling in the blanks” of the image by removing some small parts of the image and asking
the NN to fill it in. How do you train? Well, ChatGPT sampled the entire internet and gave
it complete training data to figure out the 32777th word. In reality, supervised and rein-
forcement learning are the only realistic training strategies. Supervised learning is “monkey
see, monkey do,” while reinforcement learning is “doggy do good thing, doggy gets biscuit.”
Unsupervised learning didn’t seem like real learning until the “fill in the blank” concept
happened: self-supervised learning. The internet creates its own “fill in the blank” puzzles
for the Neural Network to solve. Google London is working on this a lot.

4.1.2 “Attention is all you need”

keep spamming the attention block throughout the paper. Attention block: sharpen a
probability distribution by increasing the high probability values and attenuating the low
probability values. You can also do blunting, which is the opposite. These are calculated
based on the Temperature parameter, T = 0 is sharpening to the extreme case, T = ∞ is
blunting to uniform case. We want somewhere in the middle. This is based on the Boltzmann
definition of the temperature. “softargmax” formula:

qi =
epi/T∑
i e

pi/T
:=

epi/T

Z
.

if 0 ≤ T ≤ 1 it sharpens, if 1 ≤ T ≤ ∞ it blunts it.

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V

4.1.3 Hallucinations

Why did it take so long from 2017 to make AI a big deal?
AI is really wasteful for power consumption, every single ChatGPT query uses so much

Energy. So people decided that it’s way too computationally expensive to publish AI because
there aren’t enough computers to supply the world. Meanwhile, Sam Altman tried to be
like “500 users limited edition,” and other companies were pressured to follow suit, the only
company who played their cards well was Microsoft funding OpenAI at arm’s length, keeping
OpenAI responsible in case it doesn’t work and making Microsoft profitable if it works. Big
challenge of AI: Try to reduce power consumption by 106. Back to hallucinations: people
expect that ChatGPT is some divine power that knows everything, but in reality it’s just
a monkey pulling words out of a jar. BUT HALLUCINATIONS ARE INTENDED, IT’S
PROBABILITY ONLY!!!

4.1.4 RAG (Retrieval Augmented Generation)

It’s a hack that tries to lower hallucination:
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• Looks on google for some documents

• “Based on the above documents, what is Boltzmann’s role ...”

4.1.5 General Comments

There is a science in Data Science: Statistics in new garb, instead of µ and σ, Data Science
uses billions of parameters. While Statisticians were very cautious about making mistakes.

• Sampling Bias

• You have to call it out in advance to say something is lucky, machine learning guys do
cross-validation by holding back some of the data, then checking to see if it works

5 More Source Coding

5.1 Shannon-Fano-Elias Code (10.11.24)

Instead of using pdf, we use cumulative distribution. If p(x) > 0, then define F (x) =∑
a≤x p(a) for all x. Looking at the graph vertically, you can think of it as a partition of the

unit interval, since 0 ≤ F (x) ≤ 1. Define

F̄ (x) :=
1

2
p(x) +

∑
a<x

p(a).

F̄ is surjective, hence we can turn it into a code. But, F̄ is real, which requires infinite bits!!!
So, if we use an approximate value of F̄ , how much accuracy do we need? F̄ just gives the
point in the middle of the ranges for each codeword, which is the optimal point to “aim for”
with our binary decimal approximation.

Truncate F̄ to ℓ(x) bits:
⌊F̄ (x)⌋ℓ(x).

We use the first ℓ(x) bits of F̄ (x) as a code for x. Clearly,

F̄ (x)− ⌊F̄ (x)⌋ℓ(x) <
1

2ℓ(x)
.

If ℓ(x) = ⌈log 1
p(x)

⌉+ 1, then

1

2x
< p(x)/2 = F̄ (x)− F (x− 1).

This lets you decode. Thus, ℓ(x) bits is enough to describe x.We also want prefix-free codes.
Consider a codeword

z1z2 . . . zℓ ∈ {0, 1}ℓ

and an interval corresponding to it of[
0.z1z2 . . . zℓ, 0.z1z2 . . . zℓ +

1

2−(ℓ+1)

]
.
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The lower end of the interval is in the lower half of the step and the upper half is below
the top of the step. Thus, this interval lies within the entire step.

x p(x) F (x) F̄ (x) binary[F̄ (x)] ℓ(x) codeword
1 0.25 0.25 0.125 0.001 3 001
2 0.5 0.75 0.5 0.10 2 10
3 0.125 0.875 0.8125 0.1101 4 1101
4 0.125 1 0.9375 0.1111 4 1111

.

This code isn’t very good, for example because the last digit is pointless. Average length:
2.75, Entropy=1.75. Huffman code achieves this entropy so it is optimal.

We want to bound the average length of the codeword:

L(x) =
∑

p(x)ℓ(x) =
∑

p(x)

(⌈
log

1

p(x)

⌉
+ 1

)
< H(X) + 2

5.1.1 Arithmetic Coding

Associate each codeword to a subinterval of [0, 1] [a, b). Choose a number in the subinterval
and encode the number in binary. Arithmetic codes become better when you have entire
words as opposed to separate symbols. Also, if the source pdf changes, we dont have to
completely rewrite the code.

Visualizing Arithmetic Codes Ruler Intervals: Focus on one inch of a ruler and put a
tickmark at the halfway point, splitting it into two intervals

[
0, 1

2

)
and

[
1
2
, 1
)
, or, in binary

[0, 0.1) and [0.1, 1) in binary. Then split each interval again in half:

[0, 0.01) [0.01, 0.10) [0.10, 0.11) [0.11, 1),

making the tick marks smaller than the half tick. Repeat forever, so that 1/2 has tallest
tickmarks, 1/4 and 3/4 have the next tallest, etc.

Examples Given [0.52, 0.92), the tallest tickmark is at 0.75. In general, where is the tallest
tickmark for any interval [a, b). If b− a ≥ 1

2m
, then the tallest tickmark has the same height

of 1
2m
, where

m ≤ log

⌈
1

b− a

⌉
.

you get the idea
Given an interval [a, b) ∈ [0, 1), what is the fattest interval in it. Given [0.52, 0.92), we

don’t a half or quarter inch interval fully contained in it, we only have intervals of an eighth
wide:

[0.625, 0.75), [0.75, 0.875).

We take the smallest tallest interval:

m =

⌈
2

b− a

⌉
=

⌈
log

1

b− a

⌉
+ 1
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The smallest tallest tickmark corresponds to the slimmest fattest interval that is completely
contained in [a, b).

x p(x)
0 0.2
1 0.4
2 0.4

Let’s try to encode 210. We split the unit interval into 0.2, 0.4, 0.4, and then

split each subintervale into 0.2, 0.4, 0.4 of it, and so on.
2

1

0

5.2 Arithmetic Codes + Conditional Probability (10.15.2024)

Review Fano Code
x p(x) F (x) F̄ (x) F̄ (x) in binary ℓ(x) cw
1 0.25 0.25 0.125 0.0001 3 000
2 0.25 0.5 0.375 0.011 3 001
3 0.2 0.7 0.6 0.10011 4 1001
4 0.15 0.85 0.775 0.1100011 4 1100
5 0.15 1 0.925 0.1110110 4 1110
H(X) = 1.891.
Back to Arithmetic Codes: Let

X ∈ {0, 1, 2}
and

p = {p0, p1, p2} = {0.2, 0.4, 0.4}.
We want to send 210. Split up the interval: the interval of 2 is [0.6, 1). The interval of 21 is
[0.6+0.4 · 0.2, 0.6+0.4 · 0.6) = [0.68, 0.84). The interval of 210 is [0.68, 0.68+0.2 · 0.4 · 0.4) =
[0.68, 0.712).

Now we want to encode this interval:

0.712 + 0.68

2
= 0.696 ≈ 0.101100b,

truncating to ⌈log(1/0.032)+1⌉ bits. In other words, we find (the lower bound of) the largest
binary interval that is fully contained in [0.68, 0.712).

38



Example #2
Let

X ∈ {0, 1, 2, 3}

and
p = {0.05, 0.05, 0.5, 0.4}.

The message we want to send is 2320, which lies in the interval [0.42, 0.425). The length
of our code word will be ⌈− log(0.5 · 0.4 · 0.5 · 0.05)⌉ + 1 = 9. The midpoint of the interval,
0.4225, encoded in binary and truncated to nine bits is 011011000.

Optimality
Let X ∈ {0, 1, ...,m} and p = {p0, p1, ..., pm}. Consider the probability distribution of all

words X1, X2, . . . . We have

ℓ(x) ≤
⌈
log

1

p∗(x)

⌉
+ 1 = ℓsh(x) + 1,

where p∗(x) = px1px2 . . . pEOF is the length of the interval. So the expected length

L∗ =
∑

ℓ(x)p∗(x) ≤ Lsh + 1 < H(X) + 2.

So it’s pretty good.

6 Conditional Probability

6.1 Conditional Prob (2024.10.17)

Definition: Given two events E and F, the probability that E occurs given that F occurs is

P (E|F ) = P (E ∧ F )
P (F )

where P (E ∧ F ) is the probability that both E and F occur.
e.g. probability that 3 tosses are heads given at least one head:

P =
P (3 tosses and at least 1 head)

P (at least one head)
=

1/8

7/8
=

1

7
.

Bridge Example : North and South vs East and West. We know that North and South
have 8 spades between them. What is the probability that East has 3 of the remaining
spades.

P =

(
5
3

)(
21
10

)(
26
13

) .

Extension:

P (E1E2 . . . En) = P (E1)P (E1|E2)P (E3|E2E1) · · ·P (En|E1E2 . . . En−1).
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Let us have 52 cards that are randomly split into 4 piles of 13 cards each. What is the
probability that each pile has exactly one Ace?

E1 : ace of spades in one of the piles E2 : ace of spaces and hearts are in different piles . . . .

P (E1) = 1.

P (E2|E1) =
39

51
.

P (E3|E1E2) =
26

50
.

P (E4|E1E2E3) =
13

49
Go multiply.

6.1.1 Bayes’ Rule

P (E) = P (EF ) + P (EFC)

= P (E|F )P (F ) + P (E|FC)P (FC).

This is the law of the excluded middle lol.

P (A|B)P (B) = P (B|A)P (A) = P (A and B) = P (B and A)

Example A lab blood test is 95% effective in detecting disease when actually present, and
has a 1% false positive rate for healthy patients. If 0.5% of the population actually have the
disease, what is the probability that a person has the disease given a positive test?

Remembering P (T ) = P (T |D)P (D) + P (T |DC)P (DC):

P (D|T ) = P (T |D)P (D)

P (T )
=

0.95 · 0.005
0.005 · 0.95 + 0.995 · 0.01

= 32.3%

6.1.2 Independent Events

If and only if E and F are independent events, then P (E|F ) = P (E) and P (F |E) = P (F ).
Then, P (E and F) = P (E)P (F ).

Do not confuse “mutually exclusive” with “independent!” They are actually opposites.

6.1.3 Joint Distributions

p(x, y) = P (X = x&&Y = y)

F (a, b) = P (X ≤ a&&Y ≤ b)

This is 2D instead of 1D: we can make a table to represent the joint distribution, and we
should double sum/double integrate.

px(x) = P (X = x) =
∑
y

p(x, y)
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py(y) = P (Y = y) =
∑
x

p(x, y)

Consider a set of three red balls, four white balls, and five blueballs Choose 3 balls at
random, and let X be the number of Red balls and Y the number of white balls.

x ↓ y → 0 1 2 3 margin
0

1
(31)(

5
2)

(123 )
(31)(

4
1)(

5
1)

(123 )
(31)(

4
2)

(123 )
0 add them up

2
3

Looking at px(x), we sum the table along the rows y so its the marginal thing.

P (x ∈ A, y ∈ B) =

∫
B

∫
A

f(x, y) dx dy.

F (a, b) =

∫ b

−∞

∫ a

−∞
f(x, y) dx dy.

f(a, b) =
∂2

∂a∂b
F (a, b).

fx =

∫
f(x, y) dy, fy =

∫
f(x, y) dx.

Example a)

P (X > 1, Y > 1) =

∫ ∞

1

∫ ∞

1

2e−xe−2y dy dx =
1

e3
.

b)

P (X < Y ) =

∫ ∞

0

∫ y

0

f(x, y) dx dy =
1

3
.

c)

P (X < a) =

∫ ∞

a

∫ ∞

0

f(x, y) dy dx = 1− e−a.

X : fx, Y : fy, what is the pdf of X + Y ?

Fx+y = P (X + Y ≤ a) =

∫ ∞

−∞

∫ a−y

−∞
fx(x)fy(y) dx dy =

∫ ∞

−∞
Fx(a− y)fy(y) dy.

CONVOLUTION!!!

6.2 Conditional Expectation and Distributions (10.23.24)

Exercise Choose a point randomly in a circle with radius R such that all regions within
the circle are equally likely.

f(x, y) =

{
c x2 + y2 ≤ R2

0 otherwise.
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c =
1

πR2
.

We have the marginal distributions

fx =

∫ ∞

−∞
f(x, y) dy = 2c

√
R2 − x2 =

2
√
R2 − x2

πR2
.

Similarly,

fy =
2
√
R2 − y2

πR2
.

The probability that the distance from the origin is ≤ a is

a2

R2
.

The expected value of the distance is∫ ∞

−∞

∫ ∞

−∞

√
x2 + y2f(x, y) dx dy =

1

πR2

∫ R

0

∫ 2π

0

r2 dθ dr =
1

πR2

2πR3

3
=

2

3
R.

If you have two independent Random Variables X and Y, we want to find out fx+y, which
is

d

da
Fx+y(a) =

∫ ∞

−∞

∂

∂a
Fx(a− y)fy(y) dy =

∫ ∞

−∞
fx(a− y)fy(y) dy = fx ∗ fy.

This is only for independent variables.
The sum of two poisson random variables is another poisson random variable, where the

λ rates of the R.V.s just add together. Intuition of Poisson point process.

6.2.1 Conditional Distributions

Discrete:

pX|Y (x|y) = P (X = x |Y = y) =
P (X = x, Y = y)

P (Y = y)
.

The cumulative mass function is

PX|Y (x|y) = P (X ≤ x |Y = y) =
∑
a≤x

pX|Y (a|y).

Example Let

P (X = 0, Y = 0) = 0.4, P (X = 0, Y = 1) = 0.2, P (X = 1, Y = 0) = 0.1, P (X = 1, Y = 1) = 0.3.

Given Y = 1, then

P (X = 0|Y = 1) = 0.4, P (X = 1|Y = 1) = 0.6.
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Example 2 LetX and Y be independent poisson R.V. with λ1 and λ2. Find the conditional
distribution of X given X + Y = n. Since the sum of two independent Poissons is a poisson
with λ = λ1 + λ2.

P (X = k, Y = n− k) =
(λ1)

k

k!
e−λ1

(λ2)
n−k

(n− k)!
e−λ2

P (X + Y = n) =
n∑

k=0

P (X = k, Y = n− k)

=
n∑

k=0

(λ1)
k(λ2)

n−k

k!(n− k)!
e−λ1−λ2

=
n∑

k=0

(
n

k

)
(λ1)

k(λ2)
n−k

n!
e−λ1−λ2

=
(λ1 + λ2)

n

n!
e−λ1−λ2

P (X = k|X + Y = n) =

(
(λ1)

k(λ2)
n−k

k!(n− k)!
e−λ1e−λ2

)/(
(λ1 + λ2)

n

n!
e−λ1−λ2

)
=

(
n
k

)
λk1λ

n−k
2

(λ1 + λ2)n

=

(
n

k

)(
λ1

λ1 + λ2

)k (
λ2

λ1 + λ2

)n−k

.

You can verify that this sums to one by binomial.
Continuous:

fX|Y (x|y) =
f(x, y)

fy(y)
.

Exercise

f(x, y =

{
12
5
x(2− x− y) 0 < x < 1, 0 < y < 1

0 otherwise.

We have

fX|Y (x|y) =
f(x, y)

fy(y)
.

fy(y) =

∫ 1

0

f(x, y) dx =
8

5
− 6

5
y

fX|Y (x|y) =

{
12
5
x(2− x− y) 0 < x < 1, 0 < y < 1

0 otherwise
8
5
− 6

5
y

=
6x2 − 12x+ 6xy

3y − 4
1(0,1)×(0,1).

43



6.3 More Conditional Stuff 10.25.2024

For two random variables X and Y, with join distribution p(x, y), we can easily find E[X] and E[Y ].
We want to find the covariance between X and Y. Recall that with µx = E[X], we have

V ar[X] = E[(X − µx)
2].

We define the covariance of X and Y to be the following, with µx = E[X], µy = E[Y ].

Cov(X, Y ) = E[(X − µx)(Y − µy)]

= E[XY − µxY − µyX + µxµy] = E[XY ]− µxµy.

Properties of Covariance See https://en.wikipedia.org/wiki/Covariance#Relationship_
to_inner_products. The covariance is bilinear and symmetric.

Cov(X, Y ) = Cov(Y,X),

Cov(X,X) = Var[X].

Consider X1, X2, . . . , Xn and Y1, Y2, . . . , Yn. Then

Cov

(∑
i

Xi,
∑
j

Yj

)
=
∑
i

∑
j

Cov(Xi, Yj).

Also,

Cov

(∑
i

Xi,
∑
i

Xi

)
=
∑
i

VarXi + 2
∑∑

i<j

Cov(Xi, Xj).

Var

(∑
i

Xi

)
=
∑
i

Var(Xi)

if the Xi are independent.

Conditional Expectation:

E[X|Y = y] =
∑
x

xP (X = x|Y = y) =
∑
x

px|y

=

∫
xfx|y dx. (continuous)

Example 1 Let X and Y be iid binomial R.V.’s, both with parameters n and p. Find

E[X|X + Y = m].

E[X|X + Y = m] =
n∑

i=0

k

(
n
i

)(
n

m−i

)(
2n
m

) =
m

2
.

This is a hypergeometric distribution.
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Exercise 2

f(x, y) =
e−x/ye−y

y
.

With x, y > 0.

E[X|Y = y] =

∫ ∞

0

x
f(x, y)∫∞

0
f(x, y) dx

dx = y.

6.3.1 Joint & Conditional Entropy

H(X, Y ) = −
∑
x

∑
y

p(x, y) log p(x, y) = −Ep(x,y)[log p(x, y)].

H(Y |X) =
∑
x

p(x)H(Y |X = x)

= −
∑
x

p(x)
∑
y

p(y|x) log p(y|x)

= −
∑
x

∑
y

p(x, y) log
p(x, y)

p(x)

Chain Rule
H(X, Y ) = H(X) +H(Y |X) = H(Y ) +H(X|Y ).

H(X, Y ) = −
∑
x

∑
y

p(x, y) log p(x, y)

= −
∑
x

∑
y

p(x, y)(log p(x) + log p(y|x))

= −
∑
x

∑
y

p(x, y) log p(x)−
∑
x

∑
y

p(x, y) log p(y|x)

= H(X) +H(Y |X).

By symmetry, this is also
H(Y ) +H(X|Y ).

Relative Entropy “Distance” between two distributions. See https://en.wikipedia.

org/wiki/Kullback%E2%80%93Leibler_divergence: it is the difference between cross-entropy
and entropy.

D(p||q) =
∑

p(x) log
p(x)

q(x)
.
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6.4 Relative Entropy and Mutual Information (10.30.2024)

y ↓ x→ 1 2 3 4
∑

1 2−3 2−4 2−5 2−5 2−2

2 2−4 2−3 2−5 2−5 2−2

3 2−4 2−4 2−4 2−4 2−2

4 2−2 2−∞ 2−∞ 2−∞ 2−2∑
2−1 2−2 2−3 2−3 20

a H(X) = 7/4
b H(Y ) = 2
c H(X|Y ) = 1.375
d H(Y |X) = 1.625
e H(X, Y ) = H(X|Y ) +H(Y ) +H(Y |X) +H(X) = 3.375

KL DIVERGENCE IS NOT SYMMETRIC But, it can measure how close these two
distribtutions are, but it measures how inefficient q is w.r.t. p, so if you knew p, then q
represents how inefficient a coding of q would be.

D(p||q) = Hx(p||q)−H(p)

=
∑

p(x) log
1

q(x)
−
∑

p(x) log
1

p(x)

The first term is the average number of bits created from sampling from the distribution of
p(x) if you had thought the distribution were actually q(x) (cross-entropy). Thus, you can
think of KL divergence as the number of bits you would waste if you used a Huffman coding
for q(x) to encode p(x).

6.4.1 Mutual Information

I(X;Y ) =
∑∑

p(x, y) log
p(x, u)

p(x)p(y)
= D(p(x, y)||p(x)p(y)).

Note that if x and y are indpendent, then p(x, y) = p(x)p(y), so I(X;Y ) would be zero, as
expected. I represents how inefficient you are if you assume they are independent but they
actually aren’t.

Relation between Mutual Information and Entropy:

I(X;Y ) =
∑

p(x, y) log
p(x, y)

p(x)p(y)

=
∑

p(x, y) log
p(x|y)p(y)
p(x)p(y)

=
∑

log p(x|y)−
∑

p(x, y) log p(x)

= −
∑

p(x) log p(x)−
[
−
∑

p(x, y) log p(x|y)
]

= H(X)−H(X|Y )

= H(X) +H(Y )−H(X, Y ).
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6.5 More Mutual Information (11.01.2024)

D(p||q) =
∑

p(x) log
p(x)

q(x)
.

H(X, Y ) =
∑

p(x, y) log
1

p(x, y)
.

H(Y |X) = −
∑

p(x)H(Y |X = x) =
∑

p(x, y) log
1

p(y|x)
.

H(X, Y ) = H(X) +H(Y |X).

I(X;Y ) = I(Y ;X) =
∑

p(x, y) log
p(x, y)

p(x)p(y)
= D(p(x, y)||p(x)p(y)) = H(X)−H(X|Y ).

H(Y )H(X)

H(X, Y )

H(X|Y ) H(Y |X)I(X;Y )

1. If X1, X2, . . . , Xn are identical, then (Faraday’s law of induction):

H(X1, X2, . . . , Xn) =
n∑

i=1

H(Xi

∣∣[Xi−1, . . . , X1]).

2. (Square brackets denote grouping for readability.)

I([X;Y ]
∣∣Z) = H(X

∣∣Z)−H(X
∣∣[Y, Z]).

3.
D(p(x, y)||q(x, y)) = D(p(x)||q(x)) +D(p(y|x)||q(y|x)).
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Theorem: Kullback-Leibler divergence is positive (D(p||q) ≥ 0)

D(p||q) =
∑

p(x) log
1

q(x)
−H(p(x)).

This is the same as proving Gibb’s inequality because KL divergence is the difference between
cross-entropy and entropy. Lagrange multipliers:

Φ =
∑

pi log
1

qi
− λ

∑
i

qi,

∂Φ

∂qi
= − pi

qi ln(2)
− λ = 0,

qi = − pi
λ ln(2)

.∑
i

qi = −
∑
i

pi
λ ln(2)

= 1,

so qi = pi, where ∑
i

p(i) log
1

qi
= H(p)

is a minimum, so
D(p||q) ≥ 0.

−D(p||q) =
∑

p(x) log
q(x)

p(x)

≤ log
∑

p(x)
q(x)

p(x)
= log 1 = 0

This also means that
I(X;Y ) = D(p(x, y)||p(x)p(y)) ≥ 0,

and equality occurs iff X and Y are independent.

Example
H(X) ≤ log |X |,

where
|X |

denotes the number of elements in X with equality iff X is uniform. If

u(x) =
1

|X|
,

and p(x) is the mass function of X, then

D(p||u) = log |X | −H(X) ≥ 0,

so QED.
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6.5.1 Channel Capacity

Info Src
Lossless

Encoder
Receive Dest

Channel

Think of waveforms. Let us have three different kinds of waveforms we can send, corre-
sponding to 0, 1, 2. But, the channel will add noise to these waves. Let the input to the
channel be X and the output be Y :

P (Y |X = x1), P (Y |X = x2), P (Y |X = x3).

1. Send something through the channel. Before it comes out of the pipe, I ask how
surprised you would be if X = x was sent, this would be

log
1

p(x)
.

2. When it comes out, we find that Y = y. Now, how surprised are you? this would be

log
1

p(x|y)
.

3. The information you gain from seeing y come out is

log
1

p(X = x)
− log

1

P (X = x|Y = y)
.

4. In the long run,

Ex,y

[
log

1

P (X = x)
− log

1

P (X = x, Y = y)

]
=
∑

p(x, y) log
p(x|y)
p(x)

=
∑

p(x, y) log

(
p(x|y)
p(x)

p(y)

p(y)

)
= I(X;Y ).

C(Y |X)

is the notation for channel capacity, and it is defined by the maximum of I(X;Y ) over X
and Y.

7 Channels

7.1 Channel Capacity

Recall that
C(Y |X) = sup{I(X;Y )}X,Y .
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Example 1 Noiseless Binary Channel

p : 0 → 0 (1− p) : 1 → 1

I(X;Y ) =
∑∑

p(x, y) log
p(x, y)

p(x)p(y)
= H(p),

∴ C(X|Y ) = sup{h(p) : p ∈ [0, 1]} = 1bit,

when X is a uniform distribution.

Example 2 Noisy channel with non-overlapping outputs.

X Y

1
1 (p = 1/2)
2 (p = 1/2)

2
3 (p = 1/3)
4 (p = 2/3)

I(X;Y ) =
∑∑

p(x, y) log
p(x, y)

p(x)p(y)
= H(X)−H(X|Y ) = H(X) = H(p)

because H(X|Y ) = 0 since they are disjoint, and thus

C(Y |X) = 1bit.

Example 3 Let A → A with probability 1/2 and B with probability 1/2, etc. to Z →
Z0.5, A0.5

We have

I(X;Y ) =
∑∑

p(x, y) log
p(x, y)

p(x)p(y)

=
∑∑

x=y

p(x, y) log
p(x, y)

p(x)p(y)
+

∑ ∑
x+1≡y (mod 26)

p(x, y) log
p(x, y)

p(x)p(y)

=
∑∑

x=y

1

2
pi log

pi/2

pi · (pi/2 + pi−1/2)

+
∑ ∑

x+1≡y (mod 26)

1

2
pi log

pi/2

pi · (pi/2 + pi−1/2)

= H(Y )− 1.

Alternatively,
I(X;Y ) = H(Y )−H(Y |X) = H(Y )− 1,
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since it’s just a 50/50 given X. But, H(Y ) ≤ log(26), and if X is uniform, Y must be as
well, so this is attainable.

1

0

1

0

p

1− p

p

1− p

Example 4
I(X;Y ) = H(Y )−H(Y |X) ≤ 1−H(Y |X) = 1−H(p),

which is achieved when Y and X are both uniform. Alternatively,

I(X;Y ) =
∑
x

∑
y

p(x, y) log
p(x, y)

p(x)p(y)

= q(1− p) log
q(1− p)

q(q(1− p) + (1− q)p)

+ qp log
qp

q(qp+ (1− q)(1− p))

+ (1− q)p log
(1− q)p

(1− q)(q(1− p) + (1− q)p)

+ (1− q)(1− p) log
(1− q)(1− p)

(1− q)(qp+ (1− q)(1− p))

= H(some binary distribution)−H(p)

≤ 1−H(p) .

7.2 BEC/Symmetric Channels 11.7.2024

1

0

1

0

?p

1− p

p

1− p

I(X;Y ) =
∑
x,y

p(x, y) log
p(x, y)

p(x)p(y)

= q(1− α) log
q(1− α)

q2(1− α)
+ qα log

qα

qα
+ (1− q)α log

(1− q)α

(1− q)α
+ (1− q)(1− α) log

(1− q)(1− α)

(1− q)2(1− α)

= (1− α)q log
1

q
+ (1− α) log

1

(1− q)
= (1− α)H(q) ≤ 1− α,
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which occurs when X is uniform.
You might be tempted to do the following:

C = sup{I(X;Y )} = sup{H(Y )−H(Y |X)} = sup{H(Y )−H(α)} ≠ log 3−H(α),

since we can’t guarantee to create a uniform distribution on the right.
Instead, try the other way:

C = sup{H(X)−H(X|Y )} = sup{1−H(X|Y =?)P (?)} = 1− α,

which occurs when X is uniform.

7.2.1 Gaussian Channel

This is a continuous channel, so we will be using differential entropy. This channel adds
random noise to the input, and this noise is normally distributed. For input X, output
Y = X + Z where Z ∼ N(µ, σ2). Without loss of generality, assume µ = 0.

Constraint: “cost” of sending X is Var[X] = σ2
x, otherwise we can send infinite informa-

tion or something.
Since this must be at best independent,

σ2
y ≤ σ2

x + σ2
z

From the entropy of a Gaussian, and the fact that it maximizes differential entropy:

h(Y ) ≤ 1

2
log2 2πeσ

2
y

≤ 1

2
log2 2πe(σ

2
x + σ2

z).

Because Z and X are independent (i.e. h(Z|X) = h(Z)):

I(X;Y ) = h(Y )− h(Y |X) = h(Y )− h(Z) ≤ 1

2
log 2π

σ2
x + σ2

z

σ2
z

.

Symmetric Channels We call a channel symmetric if p(y|x) is symmetric as such:
The matrix of p(y|x) is: 0.3 0.2 0.5

0.5 0.3 0.2
0.2 0.5 0.3

 .
The entry in the xth row and yth column is the conditional probability p(y|x) that y is

received given x is sent. Since all the rows and columns are permutations of each other, we
call it symmetric (even though the matrix isn’t).

Consider
Y = (X + Z) mod c,

where X and Z are some distributions on Z/cZ and are independent.
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Given

p(y|x) :

0.3 0.2 0.5
0.5 0.3 0.2
0.2 0.5 0.3

 ,
find C(Y |X).

I(X;Y ) = H(Y )−H(Y |X) = H(Y )−H({0.3, 0.2, 0.5}) ≤ log 3−H({0.3, 0.2, 0.5}).

If input is uniform, then Y is uniform as well, so this works.

Computer Architecture Properties of Channel Capacity:

1. Because I(X;Y ) ≥ 0
C(Y |X) ≥ 0

2. Because I(X;Y ) ≤ H(X), H(Y )

C ≤ log |X | and C ≤ log |Y |

3. I(X;Y ) is continuous and concave on p(x).

7.3 Comp Arch. 101

AND gate: z = x ∧ y = x · y = x AND y
x(t) y(t) z(t)
0 0 0
0 1 0
1 0 0
1 1 1

OR gate: z = x ∨ y = x+ y = x OR y
x(t) y(t) z(t)
0 0 0
0 1 1
1 0 1
1 1 1

NOT gate: y = NOT x = x̄ =∼ x
x(t) y(t)
0 1
1 0
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Delay/Flipflop: y = Dx delays output by 1 clock cycle. Only element with a
notion of memory. Everything else is memoryless/instantaneous.

Ignore this:

D = e
d
dx

x(t) y(t+ 1)
0 0
1 1

Sticky Bit: As long as you see 0, you will output 0. Once you see a 1 you output a 1 and
then it remains at 1 forever. z[t+ 1] = z[t] ∨ x[t]

Toggle Bit When you see a zero, output the same bit as before, but flip it if you see a 1.

Make sure you understand why these work.
Parallel AND: k bits going to each input, k bits outputted, each correspond bit is ANDed,

so 11000 AND 01100 is 01000.

uncurry (&&) <$> z ip a b

Aggregate AND: everything ANDed together.

f o l d r (&&) True $ ( a++b)
a l l id $ ( a++b)
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(Not to be confused with the snake)

k-bit adder: Each layer takes in xi, yi, ci
and outputs zi, ci+1 We have

xi(t) yi(t) ci(t) zi(t) ci+1(t)
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 0
1 1 0 0 1
1 1 1 1 1

So,
zi(t) = x̄iȳici + x̄iyic̄i + xiȳic̄i + xiyici.
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Theorem Given f : Fk
2 → Fl

2, we can find some memoryless circuit with that does this.
This can be done only with AND, OR, and NOT gates.

Define a stream stream(Fk
2) to be the set of infinite sequences, each element of which is

a k-bit block. Then for every function

f : stream(Fk
2) → stream(Fl

2),

we can build a circuit that implements f using only AND, OR, NOT, FLIPFLOPS, provided
that only a finite amount of memory is necessary.

7.4 Hamming Codes and Shift Registers (11.13.2024)

Recall: Source codes try to compress the input to maximize efficiency, but channel codes
add redundancy to be able to correct for noise.

There are n basis waveforms, which are combined through the channel. The waveforms
are sent at different times to be encodable and decodable (TDM, Time Division Multiplex-
ing). You could also split them in frequency (FDM, Frequency Division Multiplexing).

However, we don’t care about this. We will only look at the digital channel coding.

7.4.1 Channel Coding

Example k-bit message: 11001.
Code: 000 111 111 000 000 111 n = 3k

k n e
arbitrary 3k 1 per block of 3

.

Example 2 k bits and a parity bit at the end: counts the number of 1’s modulo 2 (even
or odd number of 1’s correspond to a 0 or 1).

k n e
arbitrary k + 1 Only error identification, but not error correction

Example 3 Double Parity:

k2 parity
k1 k bits

parity x

k n e
k1k2 k1k2 + k1 + k2 1

7.4.2 Hamming Codes

A good code has a high e and a low n
k n e
4 7 1
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c2
c1c3

c7c4c6

c5

(Sorry this is upside down from what we did in class but I can’t
find a venn diagram that is facing the right way online) The message is c1c2c3c4, and the
output is c1c2c3c4c5c6c7, where

c5 = parity of c1c2c3 = c1 ⊕ c2 ⊕ c3

c6 = c2 ⊕ c3 ⊕ c4

c7 = c1 ⊕ c2 ⊕ c4

1. 0101 → 0101100

2. 1100 → 1100010

3. 0000 → 0000000

4. 1111 → 1111111

To decode, we put it back on the venn diagram and check if it works.
For 0111010, we have

1
01

011

0

,
which checks out. However, if we get 0100100, we have

1
00

000

1

which has only two wrong circles. The only member of the wrong circles that isn’t a
member of any right circles is c4, so the correct message must be 0101.

Although we can draw Hamming codes easily with venn diagrams, in general codes are
too complicated to do this. So we need shift registers.
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7.4.3 Shift Registers

What is a shift register? A SR is a circuit that forms an important building block in both
encoders and decoders. It looks like this:

The length of the SR is arbitrary. The dashed lines do not have to be connected, and using
different patterns of the connections produce different codes. We say that the SR has a “tap”
in position i if the ith XOR is connected.

For Hamming codes:

Note that the third XOR isn’t tapped (so it doesn’t do anything) SR out means the outputs
of the internal FlipFlops to keep track of the state throughout the process (SR bottom). For
clarity, clock ticks happen between steps, so SROut denotes the state of the system before
the step has been propagated.

Our message is 1010, read from right to left, i.e. the order read will be 0, 1, 0, 1, and then
after that it will read zeros only.
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Step SR Out (3 bits) Message (1 bit) SR In/Top (1 bit) Codeword (1 bit)
1 000 0 0 0
2 000 1 1 1
3 110 0 0 0
4 011 1 0 1
5 001 0 0 1
6 000 0 0 0
7 000 0 0 0

7.5 Hamming Encoding and Decoding (11.15.2024)

In general, let us feed c4c3c2c1 into the machine from right to left, so that it will read
c1, c2, c3, c4, 0, 0, 0; denote cij := ci ⊕ cj and cijk := ci ⊕ cj ⊕ ck.
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Step SR Out (3 bits) Message (1 bit) SR In/Top (1 bit) Codeword (1 bit)
1 000 c1 c1 c1
2 c1c10 c2 c2 c2
3 c2c12c1 c3 c13 c3
4 c13c123c12 c4 c124 c4
5 c124c234c123 0 0 c123
6 0c124c234 0 0 c234
7 00c124 0 0 c124

This is because c11234 = c11 ⊕ c234 = c234.
Now decoder. Note that there is the same shift register inside the decoder as in the

encoder.

7.6 Hamming Decoder and Generating Functions

Look at the figure in the previous section. Note that on step 8,

c1 ⊕ c2 ⊕ c3 ⊕ c5 = 0

since c5 = c1 ⊕ c2 ⊕ c3 assuming there are no errors, so these combinations of 4 XORS are
double checking the bits 5, 6, 7.

Now assume the error is in c3.
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Step SR Out (3 bits) Buffer (7 bits) SR In/Top (1 bit) Codeword Out (1 bit)
8 c1247c2346c1325 = 011 c7c6c5c4c3c2c1 c1325 = 1 c1
9 111 0c7c6c5c4c3c2 1 c2
10 101 00c7c6c5c4c3 1 c3 ⊕ 1
11 100 . . . 0 c4
12 010 0 c5
13 001 1 c6
14 110 0 c7

Notice how the SR Out column forms a cycle! This is how the pattern 101 corrects errors by
locating its position. If there were no errors, SR Out would have started at 000 and never
moved. This is a Galois linear feedback shift register.

All Kinds of Codes Hamming codes are a kind of block code, because they act on a
block of 4 bits, mapping it to 7 bits. A special kind of block code is a cyclic code, for
which a codeword can be shifted around while still working. Some kinds of cyclic codes are
Hamming codes, BCH codes, and Reed Solomon codes, which form a family of codes. Golay
codes are a also cyclic, but they stick out from the other codes (Steiner system reference).
Why? Hamming:

k n e
4 7 1
11 15 1
26 31 1
. . . . . . . . .

BCH:
k n e
7 15 2
5 15 3
21 31 2
17 31 5
. . . . . . . . .

Reed-Solomon codes: These are special because they correct bytes, not bits.
k n e

223× 8 255× 8 16× 8
. . . . . . . . .

But, Golay codes only word for one combination of k, n, e:
k n e
12 23 3

Other than block codes, there are also things such as convolutional codes (i.e. Viterbi
code). Unlike Block codes, these codes have memory, so a message might not produce the
same codeword if run multiple times.

In real life, block codes are normally cyclic because they can be efficiently done with
things like shift registers.

Engineers: bits, Mathematician: elements of the field F2 = GF (2) = Z/2Z.
A code is identified by a generator polynomial. Hamming codes have a function

g(x) = x3 + x+ 1

61



over F2.
Why does x3+x+1 work based on the shift register design? Consider the taps on 1 and

2. This corresponds to x0 = 1 and x1 = x, and because it is a Hamming (4,7), we add on a
x3, because 3 = n− k = 7− 4.

Design of Encoder and Decoder There are two different views of the world.
Engineer (Shift Register) Mathematician (Polynomials over F2)

Bits (0/1) Elements of F2

XOR of 2 bits Addition of two elements
AND Multiplication of two elements

String of bits (1011001) x6 + 0x5 + x4 + x3 + 0x2 + 0x+ 1.
Bitwise XOR of two strings Sum of 2 polynomials
Convolution of two strings Product of two polynomials

For an example consider 110 (x2 + x) and 11001 (x4 + x3 + 1), We have

(x2 + x)(x4 + x3 + 1) = x6 + x4 + x2 + x.

Now convolve these two bits:

1100100 + 110010 + 00000 = 1010110 → x6 + x4 + x2 + x

Convolution: We reverse one string and slide them past each other. This was also how we
added the PDFs of random variables, adding together the probability of all possible pairs
that sum to x. In terms of polynomial multiplication, we look at all possible pairs that get
a term of degree x.

(f ∗ g)[x] =
∑
t

f [t]g[x− t].

Going back to Hamming (7, 4, 1) and

g(x) = x3 + x+ 1,

let us try to encode it: If our message polynomial is m(x) = c1x
3 + c2x

2 + c3x+ c4, then our
output polynomial is c(x) = c1x

6 + c2x
5 + · · ·+ c7. How do we get it?

1. Find x3m(x)

2. r(x) = x3m(x) mod g(x),

3. c(x) = x3m(x)− r(x) = x3m(x) + r(x).

If our message is 1010, then m(x) = x3 + x. m(x)x3 = x6 + x4.
m(x)x3 (mod g(x)) = x+ 1.
c(x) = x6 + x4 − x− 1 = x6 + x4 + x+ 1 → 1010011
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7.7 Encoding and Decoding Math and Channel Coding Theorem

Recall the encoder:

1. Find x3m(x)

2. r(x) = x3m(x) mod g(x),

3. c(x) = x3m(x)− r(x) = x3m(x) + r(x).

Decoder: We have some seven bit codeword c′ with gf c′(x) = c′1x
6 + c′2x

5 + · · ·+ c′7. We
want m′(x) = m′

1x
3 +m′

2x
2 +m′

3x+m′
4.

1. Let r′(x) = c′(x) (mod g(x))

2. If r′(x) = 0, there are no errors, so m′(x) = m(x), which is the c′(x) truncating the
last 3 bits, is sent.

3. If r′(x) ̸= 0, there must be at least one error. Assuming there is only one (because
that is our capability).

4. Compare r′(x) to the different remainders to find the wrong bit (see below).

Consider the remainders of xn when divided by g(x) = x3 + x+ 1.

x6 → x2 + 1, x5 → x2 + x+ 1, x4 → x2 + x, x3 → x+ 1, x2 → x2, x→ x, 1 → 1.

In binary:
101, 111, 110, 011, 100, 010, 001.

Note 101 is the remainder of x6, just like in our decoder. If we see any of these remainders,
we compare them to the gfs’ remainders.

If our code is
c′(x) = c(x) + e(x),

then
c′(x) mod g(x) = [c(x) + e(x)] mod g(x) = e(x) mod g(x),

since c(x) ≡ 0 mod g(x).

Example Message: 1011, m(x) = x3 + x+ 1, so c(x) = x6 + x4 + x3.
Codeword: 1100001, c′(x) = x6 + x5 + 1, so r′(x) = x+ 1 ̸= 0, so there is an error in the

x3 term. So, c′(x) = x6 + x5 + x3 + 1, so m(x) = 1101.
Just for fun, Hamming (15,11,1): g(x) = x4 + x+ 1.
Hamming (15,7,2): g(x) = x8 + x7 + x6 + x4 + 1.
Golay (23,12,3): g(x) = x11 + x9 + x7 + x6 + x5 + x+ 1.
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7.7.1 Channel Coding Theorem

H(X) is the lower bound of the performance of any source encoder of decoder (this is the
Source Coding theorem). Similarly, we will prove that C(Y |X) is an upper bound on the
performance of any channel encoder or decoder.

Lemma 1:
I(⟨u1, u2, . . . , uR⟩; ⟨v1, v2, . . . , vR⟩) ≤ I(X;Y ).

Lemma 1.5:
R · I(ui; vi) ≤ I(⟨u⟩; ⟨v⟩)

Lemma 2 (Fano):
H(ui|vi) ≤ H(Perr)

Combining these, we get

R · I(ui; vi) ≤ I(⟨u⟩; ⟨v⟩) ≤ I(X;Y ) ≤ C(Y |X).

Also,
I(ui; vi) = H(ui)−H(ui|vi) = 1−H(ui|vi) ≥ 1−H(Perr).

For simplicity, just assume that the ui are fair and independent coin tosses. This yields

C(Y |X) ≥ R(1−H(Perr).

64



We have

R ≤ C(Y |X)

1−H(Perr)
,

which is a bound on the number of symbols that can be sent. As Perr → 0, we find that
R → C(Y |X), so the number of symbols is bound by the channel capacity.

7.8 Channel Coding Theorem (12.02.2024)

We prove that the channel capacity C(Y |X) is the upper bound of the amount of stuff you
can send.

Info Src
Transmit
X

Receive
Y

Dest
Channel

(+ Noise)

⟨u1, u2, u3, . . . , uk⟩ → X → Y → ⟨v1, v2, v3, . . . , vk⟩

Lemma 1 Per block:
I(U⃗ ; V⃗ ) ≤ I(X⃗; Y⃗ )

or Per Symbol:
kI(U ;V ) ≤ nI(X;Y )

Consider we have a Markov Chain

A→ B → C.

We want to prove that I(A;C) ≤ I(B;C), i.e.

I(A;C)− I(B;C) ≤ 0.

Consider the expected value (This comes from I(A;C) = H(A|C)−H(C), with the H(C)
terms cancelling out. You also need to Bayes theorem to reverse the conditional probability
and use the definition of conditional entropy.):

EAC

[
log

p(c|a)
p(c)

]
− EBC

[
log

p(c|b)
p(c)

]
= EABC

[
log

p(c|a)
p(c)

]
− EABC

[
log

p(c|b)
p(c)

]
= EABC

[
log

p(c|a)
p(c|b)

]
≤ log

(
EABC

[
p(c|a)
p(c|b)

])
= log 1 = 0,
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by Jensen. This is because

EABC

[
p(c|a)
p(c|b)

]
=
∑
a,b,c

p(a, b, c)
p(c|a)
p(c|b)

=
∑
a,b,c

p(a)p(b|a)p(c|b)p(c|a)
p(c|b)

=
∑
a,b,c

p(a)p(b|a)p(c|a)

=
∑
a,b,c

p(b|a)p(a, c)

=
∑
a,b

p(b|a)p(a)

=
∑
a,b

p(a, b) = 1.

By data processing inequality, since C only depends on B and not A, we can expand p(a, b, c)
like that. Something something markov property? yeah

By the same logic, I(A;C) ≤ I(A;B). Why? Going backwards,

I(A;C)− I(A;B) ≤ 0

EAC

[
log

p(a|c)
p(a)

]
− EAB

[
log

p(a|b)
p(a)

]
.

And continue as before. Going back to our channel model, we have the markov chain

U → X → Y → V,

so we have I(U ;V ) ≤ I(U ;Y ) ≤ I(X;Y ), proving Lemma 1.

Lemma 2
H(ui|vi) ≤ H(Perr).

We are dealing with a binary channel. If there is an error, there is only one possibility and
can be corrected by flipping the bit. We define Perr to be the probability that the bit sent
into the encoder is received wrongly out of the decoder, so vi ̸= ui is received.

If you know the bits to X translation in the encoder and p(y|x) of noise in the channel
and the Y to bits translation of the decoder, we can determine Perr exactly.

Toss a coin with weight Perr, if heads then you know that you have to flip it, but if tails
then you know that it is right with no uncertainty, so

H(ui|vi) ≤ H(Perr).

(it is actually equal but no one cares)
From Lemma 1,

k

n
I(ui; vi) ≤ I(X;Y ) ≤ C(Y |X).
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0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1101

1100

1010

1110

1011

1111

From Lemma 2,
I(ui; vi) = H(ui)−H(ui|vi) ≥ 1−H(Perr),

assuming that ui is 0 or 1 uniformly (on average), which is the worst we can send. Again
this is also an equality but dw about it. Combining them,

k

n
≤ C(Y |X)

1−H(Perr)
.

Letting Perr → 0, we see that
k

n
≤ C(Y |X).

We can consider k/n to be the rate of data through the channel. Recall that for source
coding, we knew of a way to almost get to the lower entropy bound (Huffman is within one),
but for channel coding there isn’t a way to get to the upper bound.

Geometric Intuition of Codes We need a hypercube graph. If a 1d hypercube graph is
a single vertex, we define an nd hypercube graph to be two copies of an n − 1d hypercube
graph with the corresponding edges connected. We can also think of the nd hypercube graph
as 2n vertices labeled in binary from 00 . . . 0 to 11 . . . 1, where two vertices are connected
by an edge if they differ by exactly one bit. This will yield n · 2n−1 edges. We define the
distance d(x, x′) between two vertices x and x′ to be the minimum number edges between
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them, or, alternatively, the number of positions that x and x′ differ bitwise. This is known
as the Hamming distance.

7.9 Hamming “Sphere” or Something (12.04.2024)

We define the Hamming “sphere” at node x with radius r is the set of all nodes on the
Hamming hypercube that are ≤ r units away from x.

“Sphere”(x, r) := {x′|d(x, x′) ≤ r}.

We find that the volume of the “sphere” is

⌊r⌋∑
k=0

(
n

k

)
.

This is because there are
(
n
k

)
ways to pick k bits to flip out of an n-bit number. Now, we

can determine if a code is good.
Consider a source coder that maps 2k → 2m.
Recall how a cyclic code works: If there are 2k red nodes in the 2n space (valid codewords),

such as ⟨b1, b2, . . . , bn⟩, then ⟨bn, b1, . . . , bn−1⟩ is also a red node. (idk why we are talking about
these)

If a blue dot comes out of the channel, we snap to the closest red dot, which would
hopefully fix the error. Naturally, we ask how many errors can be corrected.

1. For every red dot, blow a balloon from radius zero

2. Grow the balloons simultaneously

3. Stop when two touch

4. Take a step back, where the radius is R.

R is the maximum number of errors you can correct. If there are more than R errors, you
cannot guarantee an accurate decoding.

Let ci and cj be some red codewords. Then

dmin = mini ̸=jd(ci, cj),

and

R =

⌊
dmin − 1

2

⌋
=

⌊
dmin

2

⌋
− 1.

Imagine a (4, 10) code. Since the volume of a sphere of radius 3 in a 10-d hypercube is(
10

0

)
+

(
10

1

)
+

(
10

2

)
+

(
10

3

)
= 176,

and there are 24 red codes, so there would have to be 176 · 24 nodes, which is greater than
210, so it is impossible.
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WHAT IS ON THE TEST

1. Channel capacity (Mutual information, KL Divergence (D(p||q)), Binary Symmetric
Channel, Binary Erasure Channel)

2. Channel Codes (Shift Registers, Generating Polynomials, Hypercube Geometry intu-
ition)

3. Channel Coding Theorem

7.10 Guest Speaker Professor Beth Malmskog (12.06.2024)

Introduction to Error Correcting Codes She studies locally-recoverable codes using
algebraic geometry and number theory, as well as code-based post-quantum cryptography
based off error correcting codes.

A code is any system for communicating information, and the alphabet is the set of
symbols (actions, words, morse code etc.) used in the system. Communication consists of
not only communicating across distance but also across time (storage). For example, books
do this, as well as something like floppy disks.

Digital codes: Every symbol is translated into a string (vector) of digits. Every mean-
ingful vector in a system is called a codeword. For example, for an image, we can encode
each pixel as a number into a longer vector. The set of all codewords is a code.

We also need to build redundancy into our codes, not only because of human error but
also due to electronic and mechanical errors. For example, error detecting codes can be used
to determine if an error happened. Consider Z/nZ, the integers modulo n under addition,
where two numbers a and b are considered equivalent if they have the same remainder when
divided by n. You can think of this as counting on a clock. Consider the “Mod Detecting
Code,” other wise known as a Universal Product Code (UPC), which consists of 11 digits
of product information (like the label of an item or any other info) and a 12th check digit.
If the first 11 digits are d1, d2, . . . , d11, then we define the 12th digit d12 to be the digit such
that

3d1 + d2 + 3d3 + d4 + · · ·+ 3d11 + d12 ≡ 0 (mod 10).

If the first 11 digits are 09661911248, then the 12th digit would be 7. But why are we
multiplying every other digit by 3? This is because we can detect some wrongful digit swaps.
Ok, how do we correct errors? Send the message three times and do majority rules for each
bit. But this isn’t very efficient.

Hamming Codes To be more efficient, we can use Hamming codes. We know how this
works, go back up in the notes if you want to review them. Hamming codes have 16 legal
codewords.

What makes a good code? First, we want efficiency. A code has length n if each codeword
is a vector of n symbols. There are k information symbols if it takes k symbols to send.

We also want effectiveness, that is to correct many errors. We define the Hamming
distance of two vectors to be the number of digit places where they are different. The
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minimum distance of a code is the smallest distance between two distinct codewords of a
code. If we find a w⃗ such that

d(v⃗, w⃗) ≤ d− 1

2
,

we know that it is probably meant to be v⃗. if there are up to d − 1 errors, we will correct
wrongly but detect a code regardless.

Theorem: Singleton Bound. If a code has a length n, a minimum distance d and if each
codeword has k information symbols, then

d ≤ n− k + 1,

and if equality happens, then the code is called a maximum distance separated (MDS) code.
Hamming codes are not an MDS code, since

7− 4 + 1 = 4,

but d = 3 so it isn’t perfect.

Reed-Solomon codes Let q be prime, and let a⃗ = (0, 1, 2, . . . , q − 1) be the elements of
Z/qZ. (This actually works for the integers mod qn in general). Let 1 ≤ k ≤ q. This is
the dimension of the code. Define Lk−1 to be the set of polynomials g(x) of Z/qZ[x] with
degree ≤ k − 1. For every g ∈ Lk−1, we define g(α⃗) = (g(0), g(1), . . . , g(q − 1)), evaluating
the polynomials in Z/qZ. The Reed-Solomon code is defined as

RS(k, q) = {g(α⃗) : g ∈ Lk−1}.

Every polynomial of degree at most k − 1 gives a vector of length q in RS(k, q).
Example: Let q = 5 and k = 3. If g(x) = x2 − 4x + 3 = x2 + x + 3, then we have

g(α⃗) = (3, 0, 4, 0, 3). The function has three degrees of freedom (information symbols) and
the length of the code is 5, and there are 53 total codes. Note that every polynomial in L2

is a linear combination of {1, x, x2} over F5, since

g(x) = a+ bx+ cx2

with a, b, c ∈ Z/5Z. If f1(x) = 1, f2(x) = x, f3(x) = x2, then

f1(α⃗) = (1, 1, 1, 1, 1), f2(α⃗) = (0, 1, 2, 3, 4), f3(α⃗) = (0, 1, 4, 4, 1),

and this forms a basis of the RS(3, 5) code. Is it a good code? Every quadratic polynomial is
determined by 3 coefficients, so there are three information symbols. If we have two distinct
quadratic polynoimals, they can intersect in 0, 1, or 2 points. Similarly, mod q, they can
intersect in 2 points, so the minimum distance at least 5−2 = 3. The Singleton bound yields
d ≤ n − k + 1 = 3, so RS is optimal! We don’t want k to be too big, for example if k = q
then there is no minimum distance which is bad. Depending on k, we can do the trade-off
between k and distance. The way that we can determine the polynomial given the codeword
is the polynomial interpolation algorithm. Reed-Solomon codes are still really popular in
things like music storage.

Since there are qk, and we need a lot of codewords, we need a large prime q, which isn’t
very efficient for calculating on computers. Instead of using the values of Z/qZ, which can
be thought of as points on a line, we can consider points on a curve X , which is the solution
to some high dimensional multivariable polynomial. This lets you do coding faster.
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Cloud Storage What kind of errors occur in cloud storage? The idea in cloud storage
is spreading a codeword across many servers, so that if one server fails, it can be recovered
by thinking of the erasure as just an error, which we know how to fix with error correction.
But, we don’t like storing each symbol in a different symbol. We want a locally recoverable
code, which has the property that each symbol can be recovered by accessing only r different
symbols; then r is the locality of the code. The set of symbols used to recover that symbol
is called the recovery set of that symbol.

https://en.wikipedia.org/wiki/Berlekamp%E2%80%93Welch_algorithm. https://

en.wikipedia.org/wiki/Guruswami%E2%80%93Sudan_list_decoding_algorithm.
The big idea is polynomial interpolation. Remember that if f(x) is a univariable poly-

nomial of degre m, then it is fully determined by m+1 points (Lagrange Interpolation). We
can use this fact to locally recover an RS(k, q) code. If we erase one symbol, it’s like erasing
the value of a polynomial in one input. Then, we only have to use k other bits to recover
the entire polynomial and the erased bit. But the locality is k which is too big. We can
generalize RS codes to a higher dimension. This is the Reed-Muller code.

Let m be a natural number and q prime, then we let α⃗ = (α1, α2, . . . , αqm), where α
is a point in m dimensional space (Z/qZ)m. If 1 ≤ v ≤ q − 2, we can let Mv be the set
of polynomials g(x1, x2, . . . , xm) with coefficients in Z/qZ and total degree at most v. We
let g(α⃗) = g(α⃗1, . . . , g(α⃗qm)). We call the Reed-Muller code RMq(v,m) = {g(α⃗) : g ∈ Mv.
Consider RM3(2, 2), which has code length 9. If α⃗ = ((0, 0), (0, 1), . . . , (2, 1), (2, 2)) and
g(x, y) = x+ y, then g(α⃗) = (0, 1, 2, 1, 2, 0, 2, 0, 1). For RM5(3, 2) functions are in 2 variables
of total degree at most 3 over Z/5Z. We can restrict the function to a line, which makes it a
function of one variable. Since the total degree is 3, the polynomial over the line must also
be of degree 3, so we can recover it with only 4 points. But, there are 5 points on every
line, so we have achieved locality. We only have to look at 4 other points to figure out one
erased symbol. Since each position has 6 lines through it, we have so many different recover
sets (called availability). Unfortunately, the rate is at most q−1

q2
→ 0, which isn’t that good.

Decoding is also difficult, because it is NP-hard, but that’s good because it can be used as
cryptography. (https://en.wikipedia.org/wiki/McEliece_cryptosystem)

8 Putting it All Together

8.1 Shannon’s Theorem (12.12.24)

Theoretical Bound Practical Bound

Source
∀ source encoder/decoders,

the # of bits per source symbol is ≥ H(X)

∃ a source encoder/decoder such that
the number of bits per source symbol

is around H(X) (e.g. Huffman)

Channel
∀ channel encoders/decoders,

the # of bits/channel symbol is ≤ C(Y |X)
Maybe we can get something

that comes close to C(Y |X)

Shannon’s Theorem Given a source p(x) and a channel p(y|x), we are asked to design
an encoder and decoder, such that you achieve reliable communication (i.e. Perr → 0). Is
this possible? YES but... iff H(X) ≥ C(Y |X). This is Shannon’s theorem.
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https://en.wikipedia.org/wiki/Berlekamp%E2%80%93Welch_algorithm
https://en.wikipedia.org/wiki/Guruswami%E2%80%93Sudan_list_decoding_algorithm
https://en.wikipedia.org/wiki/Guruswami%E2%80%93Sudan_list_decoding_algorithm
https://en.wikipedia.org/wiki/McEliece_cryptosystem


Unuseful Equations: ∑
n≤x

µ(n) = O
(
x1/2+ϵ

)
,

where
µ ∗ 1 = I,

assuming the Riemann Hypothesis. ∫
∂Ω

ω =

∫
Ω

dω

(u · v)1 = u ∧ ∗v(
□+

m2c2

ℏ2

)
ψ = 0

ea
d
dxf(x) = f(x− a)(
1−

∫ )−1

0 = ex

e−ax

(
d

dx
− a

)k

y =

(
d

dx

)k

(e−axy) = 0 ∴ y =

(
k−1∑
n=0

ant
n

)
eax
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