

“Augment-Eat”
SDD Assessment Task 2

Danyl Stephan Kok

Isaac Edwin Winoto

Nicholas Riykco Widjaja

12A

Augment-EAT | 1

Table of Contents

1. Research Paper

a. Problem Identification

i. Needs of the Client

ii. Boundaries of the Problem

b. Process of Data Collection Method

i. Online Survey

ii. Interview

1. Go Curry

2. Bari-Uma Ramen

iii. OnlineResearch

c. Conversion of Data to Information

d. Proposed Solution

i. Programming Language

1. C#

ii. CASE Tools Used

1. Unity

2. Vuforia

3. Android Studios

4. Visual Studio

iii. Paradigm

iv. Software Development Approach

2. Software Documentation

a. System Flowchart

b. Structure Chart

c. Context Diagram

3. The Actual Source Code

a. Source Code

b. Data Dictionary

Augment-EAT | 2

Augment-EAT | 3

1. RESEARCH PAPER

a. Problem Identification

How do restaurants effectively sell and present their food? For the majority of restaurants

in the world, a physical menu is used to display the variety of food and drinks offered in the

restaurant, together with their respective prices. As such, the menu becomes a huge factor when

customers want to decide what to eat. It is a critical component to the restaurant's success,

serving its primary purpose to “advertise” the offered food in the restaurant. However, we

believe there are still some issues with how the menu system works, which can be further

improved through technology to enhance user experience and advertise the restaurant’s products.

A huge issue of the physical menu in today’s world is its limitations to display

information. Most menus provide the name of the dish and a small description of the ingredients

in the dish. Several pictures are also usually attached into the menu, but not every item list has an

image. The data we collected through surveys and interviews below show that menu with

specific images result in consumers choosing those types of food more. Furthermore, especially

in restaurants that serve only specific groups of people (ex. Korean BBQ, French), the difference

in language and food vocabulary can also be an issue.

A more important issue that we discovered based on our surveys from a paper-based

menu is the difference between the images in the menu and the actual output from the kitchen.

Often times, customers find that the actual presented food is displayed differently, in size and

quality, to the images shown in the menu. Furthermore, the image provided by the restaurant

only limits the viewer to see the food from one angle. Customers would feel more satisfied if the

food in the menu could be displayed as similar to the actual food. A tech feature that would

allow the food to be viewed in 360 degrees in the menu would further boost the customer

experience.

Augment-EAT | 4

b. Process of Data Collection Method

After identifying these issues, our group used several data collection methods to identify

the problems related to the attractiveness, effectiveness, and customer satisfaction of the

paper-based menu.

Online Survey

Our online-based survey focused on a small sample space of key personnel. These

personnel include IICS Senior High teachers and students, along with parents who voiced their

opinions on the survey given regarding their purchasing behavior and the problems they may

encounter in a paper-based menu. Below are the questions that we asked our key personnel

before designing and thinking of our solution.

Augment-EAT | 5

i. Face-to-Face Interview

We also conducted a face-to-face interview with surrounding restaurants in Lippo Mall

Puri, such as Go-Curry and BariUma Ramen. These interviews aim to identify any complications

that the restaurants may have with customer choice and paper-based menu. We also asked their

opinions on possible improvements to the menu and what they thought if emerging technologies,

that could be our possible solutions, were added to the menu.

● Go-Curry:

Go-Curry’s menu gives no image reference to their menu that serves Indian, Thai, and

Japanese curry, which all might be unfamiliar to many Indonesian customers. Due to the nature

of their menu (with only words and icons), we asked them whether there were any complaints

from the customers regarding the menu. Although Go-Curry stated that there aren’t a lot of

complaints with the menu system, they believed that images would further resolve the issue of

portion size that customers usually get confused with. Whenever customers ask the food size,

they say it is “cukup untuk satu orang,” or just right for one person. However, we still consider

this description vague, as how much a person can eat is something relative. Being able to

visualize the portion, especially in proportion to the plate and table mat, would help the users

decide which dish would be best for them.

Augment-EAT | 6

● Bari-Uma Ramen:

We interviewed the product manager of Japanese food chain Bari-Uma Ramen, who

provided his personal opinion about the menu system in his restaurant. According to him, the

menu relies heavily on images to influence consumers’ decisions. He stated that the restaurant

sets the standard that the actual product should be very similar to what is displayed in the menu.

According to him, pictures play a crucial role in influencing consumer’s decisions, as they make

certain products more eye-catching to the viewer. He added that to increase this attractiveness,

Bari-Uma Ramen is entering a transition period to update their menus to meet customer needs

moving forward. When we asked whether an AR-based menu, one of our potential solutions,

could help boost his company, the manager responded that it would help revolutionize the menu

concept, but would take time for both restaurants and consumers to adapt.

The above QR code links to an online mp3 file of our interview with Bari-Uma Ramen.

ii. Augmented Reality Familiarity Survey

Shortly after, we randomly asked visitors in Lippo Mall Puri about their familiarity with

Augmented Reality. About 63% of respondents, most of which realized what AR was when we

mentioned some AR-based applications like Snapchat and Pokemon Go, were familiar with AR.

This data speaks to why an AR-based menu may prove both innovative and relevant for users

here in Jakarta.

Augment-EAT | 7

iii. Online Research

To add on, we also conducted online research to find out whether customers around the

world believe that the actual food presented is similar to the food displayed on menus. We

researched the stats that links customer choice and satisfaction with the layout, design and

images of restaurants menus. We also researched the frequency of our customers visiting

restaurants and customer ordering behavior.

According to the “Ask Your Target Market” survey conducted by Anne Pilon, 41% of

correspondents eat out every week, and more than 75% eat out every month. Furthermore, 59%

of correspondents state that they have to scan through the menu and images before deciding what

to order in restaurants.

Augment-EAT | 8

c. Conversion of Data to Information

Our process of data collection has allowed us to determine the following conclusions:

● Product Usage

Augment-EAT | 9

Our data obtained from online surveys shows that 41.9% of our correspondents eat out a

few times a week, and more than 86% often eat in restaurants. Also, more than 58% state that the

pictures in the menu play a deciding factor in what they eat. These two sets of data show us that

almost 9 out of 10 consumers picks up a menu sometime during the week, and a majority of their

food selections is influenced by the attractiveness of the images and display of the menu. Thus, it

is crucial that the menu presents itself as best as it can for all consumers.

Our online survey also goes on to depict that more than 20% of correspondents believe

that the images in the menu are different with the actual presented food. Although 20% seems to

be a fairly low percentage, to put it into perspective, it shows us that 1 out of 5 consumers are not

satisfied with the accuracy of the menu. This brings up the need for a food model that consumers

can see beforehand that is similar to the actual food. We believe this can be done through today’s

advanced technologies, including Augmented Reality, which allows a 3D image to be

superimposed once a placemat is scanned.

Since 63% of correspondents that were interviewed have used and understood what AR

is, it would not be too difficult to adapt and use a new technology like AR in the restaurants. It is

true that it would require some process for AR to be embraced by consumers, but it is likely to be

effective enough to tackle our problems.

Augment-EAT | 10

d. Proposed Solution

In consideration with the problems with paper-based menus that we discovered above, we

decided to develop a menu-based augmented reality application that allows customers to view

dishes in 3D and 360 degrees. By using augmented reality, a tech feature that superimposes a

computer generated image or object that can be displayed on the user’s view of the real world, a

3D model of the food item the users choose can pop up on the users’ screen. We designed this

software solution specifically to aid the practicality of physical menus and improve user

experience with this new, cutting-edge technology aiming to solve the problems listed above.

This application, named as “Augment-Eat” by its developers, solves the problem where

images in the menu may be limited and may not paint an accurate picture of the actual product. It

allows us to depict an accurate 3D model of the dish where the customers are able to view it

from different angles. The fact that our app allows users to see the food in its original size before

it is served is also very advantageous, as users can estimate the portion of the food serving before

ordering. Finally, with this menu-based application, restaurants are able to manually add new

menus to their restaurant list and input adequate descriptions for each menu more efficiently.

Specification Requirement for Software Solution (Menu-Based AR Mobile Application)

● Able to work on all Android devices running operating system equivalent or greater than

an Android Lollipop Level 22.

● Able to select from different restaurants

● Able to select the dish that the users want to superimpose in Augmented Reality

● Categorize the dishes into three sub categories: Food, Drink, Set Meals

● Show information and details regarding the description and pricing of the dish

● Able to portray every dish in Augmented Reality

● Make sure the size of the food is exact to what it is in actual size

● A help menu regarding the restaurant and menu list and AR-Camera operations.

● An end user agreement fully explained in the help menu and at the beginning of the

application.

Augment-EAT | 11

i. Programming Language - C#

For our software solution, we decided to use C# as our object-oriented backend

programming language. This is primarily due to the Unity game engine, the main environment

where we will develop our application and the user interface, only supporting C#. C# works with

Microsoft Net. platform and is a supported language of Microsoft Visual Studios.

Although it was just our first time using C#, it was not difficult to adapt to it, as it is

similar to other programming languages and very easy to understand. Especially in app

development, C# is the perfect application because it allows us to see the whole app as the

superclass, and dive into each feature and page as the subclasses in the application. The

scalability and updatability of this language also aids us for our low budget and 3-month

timespan.

ii. CASE Tools Used

1. Unity

Unity is the engine platform to develop the UI. It is the environment in which we can

apply Vuforia and Android Studios to create the Augmented Reality application. Although it is

usually used for game development, in this project, we add project assets, buttons, sliders,

libraries, and checkboxes among a variety of resources to further develop our user interface.

Furthermore, Unity has a propriety of GUI tools that can be implemented in our application

without the need to manually code them.

2. Vuforia Tools

Without Vuforia, there is no AR. Vuforia provides the necessary support for all our

Augmented Reality endeavors. After creating a license key and adding the necessary image

targets, we are able to include Vuforia plugins in Unity to enable our access to the AR camera.

Another useful tool that we took advantage of was Vuforia Object Scanner. The scanner

allows us to make any object, 2D or 3D, into a target image. The following image below is our

tracking image for the software solution. Through green dot points that scan parts of the object,

we can render it into a 3D file with “.od” extension to be uploaded into our Vuforia Developer

Target Manager.

Augment-EAT | 12

With Vuforia, we are able to personalize a tracking image. Vuforia will automatically

analyze our tracking image and determine key tracking points that the AR camera will be able to

analyze and project our 3D Model into the tracking image. Furthermore, Vuforia is able to

analyze the augmentability of our tracking image. The following image below represents the

tracking image that we use for our application.

3. Android Studios

Android Studios serves as our integrated development environment to develop Android

applications. Through an Android Studios SDK (software development kit) plugin within the

Unity game engine, we are able to directly build the application within Unity itself. Furthermore,

as we develop the application in Unity in Windows, the only supported option is to use Android

Augment-EAT | 13

SDK to build our application. In the future, other CASE Tools such as Xamarin can be used to

build our application on an iOS and Linux platform.

4. Visual Studio

Visual Studio is our integrated development environment to create our C# script. Visual

Studio offers a plethora of tools that enable us to debug, test, analyze, and fulfill the needs of the

software development process. Different scripts can be used to perform specific functions from

operating menu buttons or adding event listeners to our AR objects. Furthermore, Visual Studios

will automatically give feedback or error regarding the scripts of our code.

iii. Paradigm

It would be a burden for us if we implemented the project using imperative or logic

paradigms. Especially for graphical applications, object oriented programming offers the best

advantages to a rather large system with many components, including the loading page, start

menu, restaurant list, menu widget, and AR camera features. The inheritance property of OOP

allows us to make small changes to certain features that we want to alter while not messing up

the whole system and parent functions. If we used an imperative paradigm, one mistake could

allow the whole system to not function. Troubleshooting, including the addition and removal of

restaurants, food menus, and prices can be more effectively done with the OOP. The object

oriented paradigm, when used in C# for Unity, is implemented by setting various scenes in one

project, as can be seen later in the source code. Following our system flowchart, each part of our

flowchart is represented by one or two scenes that each have different codes relating to their

behaviors. Problem solving and debugging become way more effective through OOP.

iv. Software Development Approaches

Based on the time constraint and nature of this project, we decided that a RAD approach

would fit our project best. The RAD approach suits us because this project was undertaken with

a lack of formal stages and fast development time. To add on, this Augmented Reality project

was that it used a variety of CASE tools in order to develop the system, which is another

characteristic of RAD. The reusing of code for C# from Stack Overflow and the assets that we

imported for Unity also show why our project was undertaken with RAD. Libraries of code,

Augment-EAT | 14

combined with the Graphical User Interface IDE that we used, cohere with all the CASE tools

we used to create a working Augmented Reality project.

Augment-EAT | 15

2. SOFTWARE DOCUMENTATION

a. System Flowchart

Augment-EAT | 16

b. Structure Chart

Augment-EAT | 17

c. Context Diagram

3. The Actual Source Code

a. Source Code

Source code legend:

Color Indication

Green Comments

Blue Class Name

Purple URL

Augment-EAT | 18

ChangeScene (to change scene from one page to another)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

using System.Collections;

//contains necessary classes and interfaces used in C#

using System.Collections.Generic;

using UnityEngine;

//indicates that C# is using Unity

public class changescene : MonoBehaviour

//this allows us to move from one scene to another

{

 public void changemenuscene(string scenename)

 //scene name refers to the scene we want to use

 {

 Application.LoadLevel(scenename);

 //this will load the next scene that we choose

 }

}

OpenWeb (links code to a web page)

1

2

3

4

5

6

using System.Collections;

using System.Collections.Generic;

using UnityEngine;

public class OpenWeb : MonoBehaviour

//this allows a button to be linked to a web page

Augment-EAT | 19

7

8

9

10

11

12

13

14

15

{

 public void btntwo()

 //a function that the button calls and triggers to open URL

 {

 Application.OpenURL

 (“https://iics.danylstephan.wixsite.com/augment-eat”);

 //load the url that we input in config

 }

}

UIManager (to manage and use the User Interface buttons)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

using System.Collections;

using System.Collections.Generic;

using UnityEngine;

using UnityEngine.UI; //to work with the UI

using DG.Tweening; //library used to call RectTransform function

public class UIManager : MonoBehaviour

/* this script allows the developer to move objects to selected

locations on the 2D and 3D plane using the dotween engine */

{

 public RectTransform HelpMenu, TermsandLicenseGuideline,

RestaurantList, MenuGuideline, ARCAMGuideline;

 // map the objects based on their fields to be transformed

 // Start is called before the first frame update

 void Start()

 {

Augment-EAT | 20

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

 HelpMenu.DOAnchorPos(Vector2.zero, 0.25f);

 // change the position of the HelpMenu to the screen

 /* vector2 refers to the 2d plane and the subsequent

number is the X,Y plane */

 //0.25f is a float referring to speed of moving object

 }

 public void TermsandLicenseButton()

 /* set the function name as TermsandLicenseButton and is

applicable for all buttons */

 {

 HelpMenu.DOAnchorPos(new Vector2(-500, 0), 0.25f);

 // adjust HelpMenu so that it is unseen in the screen

 TermsandLicenseGuideline.DOAnchorPos(new Vector2(0, 0),

0.25f);

 /* change the position to show the

TermsandLicenseGuideline on the screen */

 }

 public void CloseTermsandLicenseButton()

 /* set the function name as CloseTermsandLicenseButton and is

applicable for all objects */

 {

 HelpMenu.DOAnchorPos(new Vector2(0, 0), 0.25f);

 //adjust HelpMenu so that it is seen in the screen

 TermsandLicenseGuideline.DOAnchorPos(new Vector2(1500,

0), 0.25f);

 /* change the position of the TermsandLicenseGuideline to

be unseen */

Augment-EAT | 21

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

 }

 public void RestaurantListButton()

 {

 HelpMenu.DOAnchorPos(new Vector2(-500, 0), 0.25f);

 RestaurantList.DOAnchorPos(new Vector2(0, 0), 0.25f);

 /* change the position to show the RestaurantList on the

 screen */

 }

 public void CloseRestaurantListButton()

 {

 HelpMenu.DOAnchorPos(new Vector2(0, 0), 0.25f);

 RestaurantList.DOAnchorPos(new Vector2(3000, 0), 0.25f);

// change the position of the RestaurantList to be unseen

 }

 public void MenuGuidelinesButton()

 {

 HelpMenu.DOAnchorPos(new Vector2(-500, 0), 0.25f);

 MenuGuideline.DOAnchorPos(new Vector2(0, 0), 0.25f);

// change the position to show the MenuGuideline on the screen

 }

 public void CloseMenuGuidelinesButton()

 {

 HelpMenu.DOAnchorPos(new Vector2(0, 0), 0.25f);

 MenuGuideline.DOAnchorPos(new Vector2(4500, 0), 0.25f);

Augment-EAT | 22

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

// change the position of the MenuGuideline to be unseen

 }

 public void ARCameraGuidelines()

 {

 HelpMenu.DOAnchorPos(new Vector2(-500, 0), 0.25f);

 ARCAMGuideline.DOAnchorPos(new Vector2(0, 0), 0.25f);

// change the position to show the ARCAMGuideline on the screen

 }

 public void CloseARCameraGuidelines()

 {

 HelpMenu.DOAnchorPos(new Vector2(0, 0), 0.25f);

 ARCAMGuideline.DOAnchorPos(new Vector2(6000, 0), 0.25f);

// change the position of the ARCamGuideline to be unseen

 }

 // Update is called once per frame

 void Update()

 {

 }

}

Augment-EAT | 23

 LoadingBar (loading the assets in the background)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

using System.Collections;

using System.Collections.Generic;

using UnityEngine;

public class LoadingBar : MonoBehaviour

{

 public GameObject loadingScreen;

 //creates a field for the Loading Screen

 public Slider slider;

 //creates a field for the slider

 public progressText;

 //text to show loading percentage progress

 public void LoadLevel(string scenename)

 //declare which scene we want to load

 {

 StartCoroutine(LoadAsynchronously(scenename));

 //call the coroutine of the AsyncOperation

 }

 IEnumerator LoadAsynchronously(string scenename)

 {

 AsyncOperation operation = SceneManager.LoadScene(scenename);

 /* load the scene of our choosing in the background as the

loading bar operation continues */

 loadingScreen.SetActive(true);

Augment-EAT | 24

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

 //activates the loading screen

 while (!operation.isDone)

 // if operation is not done, the progress bar still executes

 {

 float progress = Mathf Clamp01(operation progress / .9f);

 //clamps a value between 0 and 1 for the operations

 slider.value = progress;

 //slider or the bar represents the progress of the scene

loading

 progressText.text = progress * 100 + "%";

 //text shows percentage loaded

 yield return null;

 //wait until next frame before repeating again

 }

 }

}

Augment-EAT | 25

Panel_Opener (it is the “information” button in the restaurant list)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

using System.Collections;

using System.Collections.Generic;

using UnityEngine;

public class PanelOpener : MonoBehaviour

//<summary> open a panel if a button is clicked

{

 public GameObject Panel;

 //set Panel as base class that Unity can reference

 public void OpenPanel()

 //set event name to OpenPanel

 {

 if (Panel!=null)

 /* checks if the Panel is active or not, operator returns

true if it is not true */

 {

 bool isactive = Panel.activeSelf;

 //returns whether the panel is active or not

 Panel.SetActive(!isactive);

 //set the panel to active

 }

 }

}

Augment-EAT | 26

MenuUIManager (to move and use the buttons in the Menu Interface)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

using System.Collections;

using System.Collections.Generic;

using UnityEngine;

using UnityEngine.UI; //to work with the UI

using DG.Tweening; //library used to call RectTransform function

public class UIMANAGER_MENU : MonoBehaviour

{

 public RectTransform DishMenu, DrinksMenu, SetDishMenu;

 // map the objects based on their fields to be transformed

 // Start is called before the first frame update

 void Start()

 {

 DishMenu.DOAnchorPos(Vector2.zero, 0.25f);

//change the position of the DishMenu screen to the camera

 }

 public void Dishmenu()

 {

 // display DishMenu, hide DrinksMenu and SetDishMenu

 DishMenu.DOAnchorPos(new Vector2(0, 0), 0.25f);

Augment-EAT | 27

23

24

25

26

27

28

29

30

31

32

33

34

17

18

19

20

21

22

23

24

25

26

27

28

29

 DrinksMenu.DOAnchorPos(new Vector2(-2500, 0), 0.25f);

 SetDishMenu.DOAnchorPos(new Vector2(-2500, 0), 0.25f);

 }

 public void DrinksButton()

 {

 // display DrinksMenu, hide DishMenu and SetDishMenu

 DishMenu.DOAnchorPos(new Vector2(2500, 0), 0.25f);

 DrinksMenu.DOAnchorPos(new Vector2(0, 0), 0.25f);

 SetDishMenu.DOAnchorPos(new Vector2(-2500, 0), 0.25f);

 }

 public void SetDishButton()

 {

 // display SetDishMenu, hide DrinksMenu and DishMenu

 DishMenu.DOAnchorPos(new Vector2(-2500, 0), 0.25f);

 SetDishMenu.DOAnchorPos(new Vector2(0, 0), 0.25f);

 DrinksMenu.DOAnchorPos(new Vector2(-2500, 0), 0.25f);

 }

 // Update is called once per frame

 void Update()

 {

 }

}

Augment-EAT | 28

LeanRotate

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

using UnityEngine;

namespace Lean.Touch

{

//This script allows you to transform the current GameObject

[HelpURL(LeanTouch.HelpUrlPrefix + "LeanRotate")]

public class LeanRotate : MonoBehaviour

{

[Tooltip("Ignore fingers with StartedOverGui?")]

public bool IgnoreStartedOverGui = true;

[Tooltip("Ignore fingers with IsOverGui?")]

public bool IgnoreIsOverGui;

[Tooltip("Allows you to force rotation with a specific amount

of fingers (0 = any)")]

public int RequiredFingerCount;

[Tooltip("Does rotation require an object to be selected?")]

public LeanSelectable RequiredSelectable;

[Tooltip("The camera we will be used to calculate relative

rotations (None = MainCamera)")]

public Camera Camera;

Augment-EAT | 29

26

27

28

29

30

31

32

33

34

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

[Tooltip("Should the rotation be performanced relative to the

finger center?")]

public bool Relative;

#if UNITY_EDITOR

protected virtual void Reset()

{

Start();

}

#endif

protected virtual void Start()

{

if (RequiredSelectable == null)

{

RequiredSelectable = GetComponent<LeanSelectable>();

}

}

protected virtual void Update()

{

// Get the fingers we want to use

var fingers =

LeanSelectable.GetFingers(IgnoreStartedOverGui, IgnoreIsOverGui,

RequiredFingerCount, RequiredSelectable);

// Calculate the rotation values based on these fingers

var twistDegrees = LeanGesture.GetTwistDegrees(fingers);

Augment-EAT | 30

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

if (twistDegrees != 0.0f)

{

if (Relative == true)

{

var twistScreenCenter =

LeanGesture.GetScreenCenter(fingers);

if (transform is RectTransform)

{

TranslateUI(twistDegrees,

twistScreenCenter);

RotateUI(twistDegrees);

}

else

{

Translate(twistDegrees, twistScreenCenter);

Rotate(twistDegrees);

}

}

else

{

if (transform is RectTransform)

{

RotateUI(twistDegrees);

}

else

{

Rotate(twistDegrees);

}

Augment-EAT | 31

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

919

2

93

94

}

}

}

protected virtual void TranslateUI(float twistDegrees, Vector2

twistScreenCenter)

{

// Screen position of the transform

var screenPoint =

RectTransformUtility.WorldToScreenPoint(Camera, transform.position);

// Twist screen point around the twistScreenCenter by

twistDegrees

var twistRotation = Quaternion.Euler(0.0f, 0.0f,

twistDegrees);

var screenDelta = twistRotation * (screenPoint -

twistScreenCenter);

screenPoint.x = twistScreenCenter.x + screenDelta.x;

screenPoint.y = twistScreenCenter.y + screenDelta.y;

// Convert back to world space

var worldPoint = default(Vector3);

if

(RectTransformUtility.ScreenPointToWorldPointInRectangle(transform.parent

as RectTransform, screenPoint, Camera, out worldPoint) == true)

{

transform.position = worldPoint;

Augment-EAT | 32

95

96

979

8

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

}

}

protected virtual void Translate(float twistDegrees, Vector2

twistScreenCenter)

{

// Make sure the camera exists

var camera = LeanTouch.GetCamera(Camera, gameObject);

if (camera != null)

{

// Screen position of the transform

var screenPoint =

camera.WorldToScreenPoint(transform.position);

// Twist screen point around the twistScreenCenter by

twistDegrees

var twistRotation = Quaternion.Euler(0.0f, 0.0f,

twistDegrees);

var screenDelta = twistRotation *

((Vector2)screenPoint - twistScreenCenter);

screenPoint.x = twistScreenCenter.x + screenDelta.x;

screenPoint.y = twistScreenCenter.y + screenDelta.y;

// Convert back to world space

transform.position =

camera.ScreenToWorldPoint(screenPoint);

}

Augment-EAT | 33

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

else

{

Debug.LogError("Failed to find camera. Either tag

your cameras MainCamera, or set one in this component.", this);

}

}

protected virtual void RotateUI(float twistDegrees)

{

transform.rotation *= Quaternion.Euler(0.0f, 0.0f,

twistDegrees);

}

protected virtual void Rotate(float twistDegrees)

{

// Make sure the camera exists

var camera = LeanTouch.GetCamera(Camera, gameObject);

if (camera != null)

{

var axis =

transform.InverseTransformDirection(camera.transform.forward);

transform.rotation *=

Quaternion.AngleAxis(twistDegrees, axis);

}

else

{

Debug.LogError("Failed to find camera. Either tag

Augment-EAT | 34

153

154

155

156

157

your cameras MainCamera, or set one in this component.", this);

}

}

}

}

LeanTranslate

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

using UnityEngine;

namespace Lean.Touch

{

/* This script allows you to translate the current GameObject

relative to the camera. */

[HelpURL(LeanTouch.HelpUrlPrefix + "LeanTranslate")]

public class LeanTranslate : MonoBehaviour

{

[Tooltip("Ignore fingers with StartedOverGui?")]

public bool IgnoreStartedOverGui = true;

[Tooltip("Ignore fingers with IsOverGui?")]

public bool IgnoreIsOverGui;

[Tooltip("Ignore fingers if the finger count doesn't match? (0

= any)")]

public int RequiredFingerCount;

Augment-EAT | 35

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

17

18

19

20

21

22

23

24

25

26

27

28

29

30

[Tooltip("Does translation require an object to be

selected?")]

public LeanSelectable RequiredSelectable;

[Tooltip("The camera the translation will be calculated using

(None = MainCamera)")]

public Camera Camera;

#if UNITY_EDITOR

protected virtual void Reset()

{

Start();

}

#endif

protected virtual void Start()

{

if (RequiredSelectable == null)

{

RequiredSelectable = GetComponent<LeanSelectable>();

}

}

protected virtual void Update()

{

// Get the fingers we want to use

var fingers =

LeanSelectable.GetFingers(IgnoreStartedOverGui, IgnoreIsOverGui,

RequiredFingerCount, RequiredSelectable);

Augment-EAT | 36

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

// Calculate the screenDelta value based on fingers

var screenDelta = LeanGesture.GetScreenDelta(fingers);

if (screenDelta != Vector2.zero)

{

// Perform the translation

if (transform is RectTransform)

{

TranslateUI(screenDelta);

}

else

{

Translate(screenDelta);

}

}

}

protected virtual void TranslateUI(Vector2 screenDelta)

{

// Screen position of the transform

var screenPoint =

RectTransformUtility.WorldToScreenPoint(Camera, transform.position);

// Add the deltaPosition

screenPoint += screenDelta;

// Convert back to world space

var worldPoint = default(Vector3);

Augment-EAT | 37

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

if

(RectTransformUtility.ScreenPointToWorldPointInRectangle(transform.paren

t as RectTransform, screenPoint, Camera, out worldPoint) == true)

{

transform.position = worldPoint;

}

}

protected virtual void Translate(Vector2 screenDelta)

{

// Make sure the camera exists

var camera = LeanTouch.GetCamera(Camera, gameObject);

if (camera != null)

{

// Screen position of the transform

var screenPoint =

camera.WorldToScreenPoint(transform.position);

// Add the deltaPosition

screenPoint += (Vector3)screenDelta;

// Convert back to world space

transform.position =

camera.ScreenToWorldPoint(screenPoint);

}

else

{

Augment-EAT | 38

89

90

91

92

93

94

Debug.LogError("Failed to find camera. Either tag

your camera as MainCamera, or set one in this component.", this);

}

}

}

}

Augment-EAT | 39

b. Data Dictionary

AugmentEat Data Dictionary

Name Data

type

Lengt

h

Scope Purpose Example

scenename String 50 Local Defines the next scene that

is passed by the

changemenuscene parameter

to the LoadLevel function.

This is declared inside the

Unity engine

RestoList (restaurant

list page)

vector2(X,Y) Array of

Integers

-2,147

,483,6

48 to

2,147,

483,64

8

Local Move the object of our

choosing to an X,Y location

only on the 2D plane

 Vector2(0, 0)

(set the game object to

0,0 location)

HelpMenu String 50 Local HelpMenu is a field that is

defined elsewhere inside the

Unity Engine. Meaning, it is

a variable that stores an

object.

HelpMenu==helpmen

u (HelpMenu is our

variable name

whereas helpmenu is

our actual game

object)

TermsandLicense

Guideline

String 50 Local TermsandLicenseGuideline

refers to a field that is

defined elsewhere inside the

Unity Engine. Meaning, it is

TermsandLicenseGuid

eline == Terms and

License Guideline

Augment-EAT | 40

a variable that stores an

object.

RestaurantList String 50 Local RestaurantList is a field that

is defined elsewhere inside

the Unity Engine. Meaning,

it is a variable that stores an

object

RestaurantList ==

Restaurant List

MenuGuideline String 50 Local MenuGuideline is a field

that is defined elsewhere

inside the Unity Engine.

Meaning, it is a variable that

stores an object

MenuGuideline ==

Menu Guideline

ARCamGuideline String 50 Local ARCamGuideline is a field

that is defined elsewhere

inside the Unity Engine.

Meaning, it is a variable that

stores an object

ARCamGuideline ==

AR Camera Guideline

IgnoreStartedOver

Gui

Boolean 1 Local It determines whether or not

fingers have to be started

over GUI

True

Augment-EAT | 41

IgnoreIsOverGui Boolean 1 Local It determines whether or not

the fingers is over GUI

True

RequiredFingerCou

nt

Integer 2 Local It gives the number of

required fingers

1

Relative Boolean 1 Local It determines whether the

rotation is performed

relative to the finger center

True

LoadingScreen string 50 Local Create a field where the

loading screen is defined

elsewhere in the Unity

engine.

LoadingScreen ==

Loading Screen

Slider string 50 Create a field where the

Slider is defined elsewhere

in the Unity engine.

Slider == Slider

ProgressText.text string 50 Create a field where the

ProgressText is defined

elsewhere in the Unity

engine. It is made up of

integer and characters.

98%

Augment-EAT | 42

operations string 50 Local Loading the next scene of

our own choosing

One scene → another

scene (difficult to

show example)

progress float 9 Local Gives value of loading

operations between 0 to 1

0.45

DishMenu String 50 Local DishMenu is a field that is

defined elsewhere inside the

Unity Engine. Meaning, it is

a variable that stores an

object.

DishMenu ==

dishmenu (HelpMenu

is our variable name

whereas helpmenu is

our actual game

object)

DrinksMenu String 50 Local DrinksMenu is a field that is

defined elsewhere inside the

Unity Engine. Meaning, it is

a variable that stores an

object.

DrinksMenu==drinks

menu (DrinksMenu is

our variable name

whereas drinksmenu

is our actual game

object)

SetDishMenu String 50 Local SetDishMenu is a field that

is defined elsewhere inside

the Unity Engine. Meaning,

it is a variable that stores an

object.

SetDishMenu==setdis

hpmenu

(SetDishMenu is our

variable name

whereas helpmenu is

our actual game

object)

Augment-EAT | 43

fingers Array of

Integers

and

Boolean

4 Local Get the fingers we want to

use

 (True, true, 2, true)

screenPoint Array of

camera

and

integers

2 Local Screen position of the

transform

(Camera, position)

worldPoint Array of

3D points

500 Local Converts back to world

space

 A 3D position,

difficult to show

example

