CSSS 569 Visualizing Data and Models
Replication: HW1 - Problem 2

Ramses Llobet

Department of Political Science, UW

February 12, 2025

Introduction

P Let's first do a quick review of how ggplot2 works.

Grammar of graphics

> A statistical graphic is a mapping of data variables to
aesthetic attributes of geometric objects. (Wilkinson 2005)

Grammar of graphics in ggplot2

» What data do you want to visualize?

> ggplot(data = ...)
» How are variables mapped to specific aesthetic attributes?
» aes(... = ...)

» positions (x, y), shape, colour, size, fill, alpha,

linetype, label...
> If the value of an attribute do not vary w.r.t. some variable,

don't wrap it within aes(...)
» Which geometric shapes do you use to represent the data?

> geom_{}:
> geom_point, geom_line, geom_ribbon, geom_polygon,

geom_label. ..

ggplot2: A layered grammar

» ggplot2: A layered grammer of graphics (Wickham 2009)
» Build a graphic from multiple layers; each consists of some
geometric objects or transformation
» Use + to stack up layers
» Within each geom_{} layer, two things are inherited from
previous layers

» Data: inherited from the master data
> Aesthetics: inherited (inherit.aes = TRUE) from the master

aesthetics
» They are convenient but create unintended consequences
> We'll revisit them very soon and learn how to overwrite them

Tidy data

##
##
##
##
##
##
##
##
##

> ggplot2 works well only with tidy data

#

OO WN

» Tidy data:

» Each variable must have its own column
» Each observation must have its own row
» Each value must have its own cell

Example: iverRevised.csv for Homeworkl

A tibble:
country
<chr>
Australia
Belgium
Canada
Denmark
Finland
France

povertyReduction effectiveParties
<dbl>
42.
78.
29.
71.
69.
57.

<dbl>
2.38
7.01
1.69
5.04
5.14
2.68

partySystem
<chr>
Majoritarian
Proportional
Majoritarian
Proportional
Proportional
Majoritarian

Building a plot from scratch

Load packages
library(tidyverse)
library(RColorBrewer)
library(ggrepel)

Load data
iver <- read_csv("https://faculty.washington.edu/cadolph/vis/iverRevised.csv")

Shorten the variable names
iver <- iver %>%
rename (povRed = povertyReduction,
effPar = effectiveParties,
parSys = partySystem)

Building a plot from scratch

ggplot (

data = iver,

mapping = aes(y = povRed,
x = effPar)
)

Building a plot from scratch

data =... and mapping =... can be
omitted for simplicity
ggplot(

iver,
aes(y = povRed, x = effPar)
)

Building a plot from scratch

No data will be drawn until you supply
geom_{}
ggplot(

iver,
aes(y = povRed, x = effPar)

)+
geom_point ()

Building a plot from scratch

Map variable partySystem to aesthetics

ggplot(
iver,
aes(y = povRed, x = effPar,
colour = parS8ys,
shape = parSys)
)+
geom_point ()

Building a plot from scratch

Why does it produce multiples smooth
curves?

geplot (

iver,

aes(y = povRed, x = effPar,
colour = parSys,
shape = parSys)

)+

geom_point () +

geom_smooth (method = MASS::rlm)

Building a plot from scratch

There is a hidden inherit.aes = TRUE

default argument in every geom_{} | ’fﬂﬂ"’/,J,,,//”""
geplot(=

iver,
aes(y = povRed, x = effPar, : =
colour = parSys, Ll o
shape = parSys)

2

) +
geom_point (
inherit.aes = TRUE,
aes(y = povRed, x = effPar, ' ' L
colour = parSys,
shape = parSys)
) +
geom_smooth (
inherit.aes = TRUE,
aes(y = povRed, x = effPar,
colour = parSys,
shape = parSys),
method = MASS::rlm

Building a plot from scratch

One solution: localize different aesthetic
settings to specific layers

ggplot (
iver,
aes(y = povRed, x = effPar)
) + L
geom_point (
aes(colour = parSys, .
shape = parSys), |
size = 4 . -
)+ H H i o 5

geom_smooth(method = MASS::rlm)

Building a plot from scratch

Another solution: override the grouping
with aes(group = 1)

ggplot(
iver,
aes(y = povRed, x = effPar,
colour = parSys,
shape = parSys)
) +
geom_point () +
geom_smooth(
aes(group = 1),
method = MASS::rlm
)

etpar

Building a plot from scratch:

How to override the default colors? Let's
learn how to get nice colors first

Building a plot from scratch:

Get nice colors with RColorBrewer
package; see here for palettes

library(RColorBrewer)

colors <- brewer.pal(n = 3, "Setl")

red <- colors[1]
blue <- colors[2] £
green <- colors[3]

print(c(red, blue, green))

[1] "#E41A1C" "#377EB8" "#4DAF4A"

https://rdrr.io/cran/RColorBrewer/man/ColorBrewer.html

Building a plot from scratch:

You can scale every aesthetic
(i.e. overwrite the default) you mapped

ggplot (
iver,
aes(y = povRed, x = effPar,
colour = parSys,
shape = parSys)
) +
geom_point ()+
geom_smooth (
aes(group = 1),
method = MASS::rlm
) +
scale_color_manual (
values = c(

"Majoritarian" = blue,
"Proportional" = green,
"Unanimity" = red

)
)

Building a plot from scratch:

Two tweaks: (1) plot geom_smooth first,
then geom_point (why?); (2) adjust the
color and size of geom_smooth (no need
in aes; why?)

ggplot (.
iver, £
aes(y = povRed, x = effPar,
colour = parSys, 4
shape = parSys)
) + d .

geom_smooth(‘ ' "
aes(group = 1),
method = MASS: :rlm,

color = "black",
size = 0.5
) +

geom_point () +
scale_color_manual(
values = c(

"Majoritarian" = blue,
"Proportional" = green,
"Unanimity" = red

)
)

Building a plot from scratch:

Let's first save what we have so far

p <- ggplot(
iver,
aes(y = povRed, x = effPar,
colour = parSys,
shape = parSys)
)+
geom_smooth(
aes(group = 1),
method = MASS: :rlm,

color = "black",
size = 0.5
) +

geom_point () +
scale_color_manual(
values = c(

"Majoritarian" = blue,
"Proportional" = green,
"Unanimity" = red

)
)

Building a plot from scratch:

Similarly, you can scale shape; see here
for all shapes.
p<-p+
scale_shape_manual(
values = c(

"Majoritarian" = 17,
"Proportional" = 15,
"Unanimity" = 16

)
)

print (p)

http://sape.inf.usi.ch/quick-reference/ggplot2/shape
http://sape.inf.usi.ch/quick-reference/ggplot2/shape

Building a plot from scratch:

Similarly, you can scale y and x (they are
also inside aes!)

P<-p+
scale_x_continuous(
trans = "log", R
breaks = 2:7 i
)

print(p)

Building a plot from scratch:

But limits of y must be large enough to
incorporate the confidence regions
produced by geom_smooth

p<-p+
scale_y_continuous(.
breaks = seq(0, 80, 20), 57

limits = c(0, 100)
)

print (p)

Building a plot from scratch:

Remove unhelpful elements (e.g. grey
background, gridlines etc.) using theme
p<-p+
theme (
panel.background =
element_rect(fill = NA),
axis.ticks.x =
element_blank(),
axis.ticks.y =
element_blank(),
)

print (p)

etpar

Building a plot from scratch:

How do we embed the legend within the
plot and remove unhelpful elements?

p<-p+t
theme (
legend.position =
c(0.15, 0.8),

legend.title =
element_blank(),
legend.background =
element_blank(),
legend.key =
element_rect(fill = NA,
color = NA)
)

print(p)

Building a plot from scratch:

With a much cleaner graph, we can
augment the graph with more
information: label

library(ggrepel)

p+)
geom_text_repel (
aes(label = country)

print (p) -

Building a plot from scratch:

Something is wrong with the legend once
we have too many mappings:

p <-p+
geom_text_repel(
aes(label = country), a
show.legend = FALSE EM
)

print (p) —

Building a plot from scratch:

With a much cleaner graph, we can
augment the graph with more
information: geom_rug
p<-p+t

geom_rug(color = "black")

print(p)

[N
etvar

Building a plot from scratch:

Final tweaks: x-axis title, y-axis
title, coordinate limits

p <-p+
labs(
x = "Effective number of parties",
y = "% lifted from poverty by taxes .
#title = ...
) + .
N —

coord_cartesian(ylim = c(0, 80))

print(p)

Building a plot from scratch:

Full code to reproduce the graph:

ggplot(iver, aes(y = povRed, x = effPar, color = parSys, shape = parSys)) +
geom_smooth(aes(group = 1), colour = "black", size = 0.25,
method = MASS::rlm, method.args = list(method = "MM")) +

geom_point(size = 2) +
geom_text_repel(aes(label = country), show.legend = FALSE) +
geom_rug(color = "black", size = 0.25) +
scale_shape_manual (values = c(17, 15, 16)) +
scale_color_manual(values = c(blue, green, red)) +
scale_x_continuous(trans = "log", breaks = 2:7) +
scale_y_continuous(breaks = seq(0, 80, 20), limits = c(0, 100)) +
theme (panel.background = element_rect(fill = NA),

axis.ticks.x = element_blank(),

axis.ticks.y = element_blank(),

legend.position = ¢(0.15, 0.89),

legend.title = element_blank(),

legend.background = element_blank(),

legend.key = element_rect(fill = NA, color = NA)) +
coord_cartesian(ylim = c(0, 80)) +
labs(x = "Effective number of parties",

y = "% lifted from poverty by taxes & transfers")

Building a plot from scratch:

How to save a graph into PDF?
width <- 8
ggsave("iverPlot.pdf", width = width, height = width/1.618, units = "in")

Customized theme

P> You won't be alone in thinking that it's quite tedious. ..
» Beginner-friendly defaults come at a cost of painstakingly
overwritting them
» Chris and | wrote a ggplot2 theme that implements visual
principles taught in lectures and his graphic style
» theme_caviz.R can be found here
» which contains three theme objects: theme_caviz,
theme_caviz_hgrid, theme_caviz_vgrid

http://staff.washington.edu/kpleung/vis/theme/theme_caviz.R

Customized theme

> To use it, simply:
Source the R script
source("your_local_directory/theme_cavis.R")

Then add it to your ggplot object as usual
some_ggplot_object +
theme_cavis

Quick showcase

ggplot(ggplot(
iver, iver,
aes(x = effPar, y = povRed, aes(x = effPar, y = povRed,
color = parSys) color = parSys)
) +) +
geom_point(size = 5) geom_point(size = 5) +

theme_cavis_hgrid

FIN

