
Homework 02

Ramses Llobet

Problem 1: Working with profile likelihoods

Consider the following dataset: y = (1, 0, 0, 1, 0, 0, 0, 0), which happens to be a series of independent realiza-
tions of a Bernoulli distributed random variable. Plot the likelihood function for the Bernoulli parameter π
given y. If the experiment were repeated, roughly what fraction of the observations would you expect to be
successes (y = 1)? Why?

Answer 1a:

In this question, we aim to simulate the likelihood of a Bernoulli distribution and visualize its profile.

For a sequence of n independent Bernoulli trials, each with success probability π, the probability mass
function (p.m.f.) of each observation yi (where yi = 1 for success and yi = 0 for failure) is:

fBern(yi | π) = πyi(1 − π)1−yi for yi = 0, 1.

The likelihood function L(π | y) for the entire sample y = (y1, y2, . . . , yn) is the product of the individual
p.m.f. values:

L(π | y) = k(y)
n∏

i=1
fBern(yi | π) = k(y)

n∏
i=1

[
πyi(1 − π)1−yi

]
where k(y) is a constant that does not depend on π but affects the scaling of the likelihood function.

Since k(y) is constant with respect to π, it does not influence the maximization of the likelihood with respect
to π. Therefore, we can drop k(y), making the likelihood only proportional to the remaining expression:

L(π | y) ∝
n∏

i=1
πyi(1 − π)1−yi

This expression is now ready for maximizing with respect to π to obtain the maximum likelihood estimate
(MLE). The code below performs this simulation and plotting.

y = c(1, 0, 0, 1, 0, 0, 0, 0) # data

L_Bernoulli <- function(data, pi) {
data: vector of binary data (0 or 1)
pi: success probability parameter for each independent Bernoulli trial

The Bernoulli likelihood is the join probability (product) of individual Bernoulli probabilities

1

res <- prod(piˆdata * (1 - pi)ˆ(1 - data))

return(res)
}

Now create vectors for loop

sims <- 1000

pi <- seq(0, 1, length.out=sims) # probability = [0,1]

lls <- numeric(sims) # to store the likelihoods

for(i in 1:sims) {
lls[i] <- L_Bernoulli(data = y, pi[i]) # estimate and store L_Ben for every value of pi

}

Visualize

dt <- data.frame(pi,lls)

dt |>
ggplot(aes(x = pi, y = lls)) +

theme_bw() +

scale_y_continuous(name = "Likelihood") +

scale_x_continuous(limits = c(0, 1),
breaks = seq(0, 1, 0.2),
name = expression(pi)) +

geom_line(aes(x = pi,
y = lls),

color = "blue", linewidth = 1) +

geom_area(fill = "lightblue", alpha = 0.5) +

geom_vline(linetype = "dashed",
color = "red",
xintercept = filter(dt, lls == max(lls))[,"pi"]) +

geom_point(x = filter(dt, lls == max(lls))[,"pi"], # Selecting pi by maxium ll value
y = max(dt$lls),
color = "black", size = 2) +

annotate(geom="text",
x = .32,
y = .002,
color = "red",
parse = TRUE, # To allow mathematical expressions
label = "pi == .25")

2

π = 0.25

0.000

0.003

0.006

0.009

0.0 0.2 0.4 0.6 0.8 1.0
π

Li
ke

lih
oo

d

Answer 1b:

As an alternative approach, we can derive and visualize the log-likelihood function of the Bernoulli distribu-
tion below.

For each observation yi (where yi is either 0 or 1), the Bernoulli probability mass function is:

fBern(yi | π) = πyi(1 − π)1−yi for yi = 0, 1.

This function describes the probability of observing yi given a success probability π.

To find the likelihood of observing the entire vector y′ = (y1, y2, . . . , yn), we take the product (joint
probability) of the Bernoulli PMFs for each individual observation. Assuming a constant probability π across
all observations, we have:

Pr(y | π) =
n∏

i=1
πyi(1 − π)1−yi .

For completeness, the likelihood axiom states that the likelihood is defined as the product of the probability
mass function (p.m.f.) and a constant k(y) :

L(π | y) = k(y)Pr(y | π)

L(π | y) = k(y)
n∏

i=1
πyi(1 − π)1−yi .

To simplify the computation, we take the natural logarithm of the likelihood function to obtain the
log-likelihood function.

log L(π | y) = log k(y) +
n∑

i=1
(yi log π + (1 − yi) log(1 − π)) .

3

Note that log(k(y)) is constant with respect to π and can be omitted in the computation, as it only scales the
likelihood’s level without affecting its functional form. However, once we omit the constant, the likelihood
becomes proportional to the right.hand side of the equation.

Dropping the constant log k(y) (since it does not affect the maximization), we get:

log L(π | y) ∝
n∑

i=1
(yi log π + (1 − yi) log(1 − π)) .

Now we can distribute the summation across terms involving yi and 1 − yi. This allows us to rewrite the
log-likelihood as:

log L(π | y) ∝

(
n∑

i=1
yi

)
log π +

(
n∑

i=1
(1 − yi)

)
log(1 − π).

The resulting equation provide the computational routine to plot the log-likelihood profile of a Bernoulli
distribution given some sample of y′ = (y1, y2, . . . , yn).

vector of data on independent Bernoulli realizations
y <- c(1, 0, 0, 1, 0, 0, 0, 0)

function of profie likelihood
fun1 <- function(pi){

sum(y)*log(pi) + sum(1-y)*log(1-pi)
}

visualize the
tibble(pi = 0) |>

ggplot(mapping = aes(x=pi)) +
fun argument to plot profile
stat_function(fun = fun1) +
make sure to provide the domain of pi
xlim(0,1)+
labs(x = "pi",

y = "Likelihood")

4

−20

−10

0.00 0.25 0.50 0.75 1.00
pi

Li
ke

lih
oo

d

To identify the maximum point, use optimize function.

optimize(fun1, interval = c(0,1), maximum = TRUE)

$maximum
[1] 0.2500143
##
$objective
[1] -4.498681

If we were to repeat the experiment, assuming no small sample bias, the expected success rate in our
observations (y = 1) would be of 1/4 (the sample mean). As the likelihood maximizes the probability of
success at 0.25.

Problem 2: Writing and testing a useful new maximum likelihood
estimator

Answer 2a.:

yi ∼ fPoisson(λi) = exp(−λi)λyi

i

y!
λi = exp(xiβ)

5

L(λ | y) = k(y)Pr(y | λ) = k(y)
n∏

i=1

exp(−λi)λyi

i

y!

log L(λ | y) = log
n∏

i=1
k(yi)

exp(−λi)λyi

i

y!

=
n∑

i=1
log
(

k(yi)
exp(−λi)λyi

i

y!

)
=

n∑
i=1

(
log k(yi) + yi log λi − log exp(λi) − log y!

)
∝

n∑
i=1

(
yi log λi − λi

)
log L(β | y) ∝

n∑
i=1

(
yi(xiβ) − exp(xiβ)

)

Answer 2b.:

fPoisson, t(y | λ, t) = exp(−λiti)(λiti)yi

y!

Pr(y | λ, t) =
n∏

i=1

exp(−λiti)(λiti)yi

y!

log L(λ, t | y) = log
n∏

i=1
k(yi)

exp(−λiti)(λiti)yi

y!

∝
n∑

i=1

(
yi log(λiti) − λiti

)
∝

n∑
i=1

(
yi

(
log λi + log ti)

)
− λiti

)
log L(β | y) ∝

n∑
i=1

(
yi(xiβ) − ti exp(xiβ)

)

Answer 2c.:

LHp <- function(param, y, x, t) { # no constant version
so put constant in the xcovariate
when running optim

x <- as.matrix(x)
t <- as.matrix(t)
beta <- param
xb <- x %*% beta
-sum(y * (xb) - t * exp(xb))

}

LHp2 <- function(param, y, x, t) { # yes constant version
so don't put constant in the xcovariate
when running optim

6

x <- as.matrix(x)
os <- rep(1, nrow(x))
x <- cbind(os,x)
t <- as.matrix(t)
beta <- param
xb <- x %*% beta
-sum(y * (xb) - t * exp(xb))

}

Answer 2d.:

obs <- 1000
beta <- c(0, 1, 2)
x0 <- rep(1, obs)
x1 <- runif(obs, 0, 1)
x2 <- runif(obs, 0, 1)
x <- cbind(x0, x1, x2)
t <- sample(c(1,2,3,4,5), size = obs, replace = TRUE)
lambda <- exp(x %*% beta)

y <- rpois(obs, t * lambda)

y %>%
as_tibble() %>%
summarise_all(list(mean=mean, sd=sd)) %>%
pander()

mean sd
16.35 14.56

The mean of yi is approximately 16.5, and the standard deviation of yi is approximately 14.7.

Answer 2e.:

stval <- c(0, 0, 0)
result <-

optim(stval,
LHp2,
method = "BFGS",
hessian = TRUE,
y = y,
x = x[,-1], # see I just put x which includes constant
t = t)

pe <- result$par # point estimate
vc <- solve(result$hessian) # var-cov matrix
se <- sqrt(diag(vc)) # standard errors

7

ll <- -result$value # likelihood at maximum

exp(pe)

[1] 1.009228 2.657231 7.454056

r <- tibble(
param = c("beta0", "beta1", "beta2"),
Point_estimates = pe,
Standard_errors = se)

r %>% pander()

param Point_estimates Standard_errors
beta0 0.009186 0.0268
beta1 0.9773 0.02742
beta2 2.009 0.03039

pe <- c(-0.056, 0.979, 2.096)
se <- c(0.026, 0.029, 0.030)

pe <- c(0.252, 0.957, 1.929)
se <- c(0.024, 0.025, 0.027)

pe <- c(-0.02446051, 1.04648278, 1.99426318)
se <- c(0.02611805, 0.02739817, 0.03003965)

dta <-
tibble(pe = pe,

se = se,
trueBeta = c(0,1,2)) %>%

mutate(lower = pe -1.96*se,
upper = pe +1.96*se,
Conf95 = case_when(lower<=trueBeta & upper >= trueBeta ~ 1,

TRUE ~0))

dta

A tibble: 3 x 6
pe se trueBeta lower upper Conf95
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 -0.0245 0.0261 0 -0.0757 0.0267 1
2 1.05 0.0274 1 0.993 1.10 1
3 1.99 0.0300 2 1.94 2.05 1

x2
r %>%

ggplot(aes(x = param, y = pe))+

8

geom_point()+
geom_linerange(ymin = pe - 1.96*se, ymax = pe + 1.96*se)+
geom_hline(yintercept = c(0, 1, 2), linetype = "dotted")+
labs(y = "Point estimates",

x = "")+
theme_bw()

0.0

0.5

1.0

1.5

2.0

beta0 beta1 beta2

P
oi

nt
 e

st
im

at
es

As the above plot shows, the point estimates are close to true value with small standard error. To improve
our confidence, we can increase the number of observations and sample size.

Problem 3: Solving the birthday problem using simulation

A famous probability problem asks “What is the probability that at least two people in a classroom of n
people share the same birthday?” Write an R program to solve this problem using simulation. Produce as
output a plot of the probabilities of at least one shared birthday for n = {2, ..., 50}.

Answer 3:

Method 1: Use duplicated in dplyr

BdayFunc <- function(n){
dd <- tibble(sims = 1:1000) %>%

rowwise() %>%

9

mutate(bdays = list(sample(c(1:365), size = n, replace = TRUE)),
twopeople = TRUE %in% duplicated(bdays)) %>%

ungroup() %>%
summarize(prob = mean(twopeople)) %>% as.numeric()

dd
}

BdayFunc(50)

[1] 0.978

Method 2: Use loop

n <- c(2:50) # n is from 2 to 50
prob <- rep(NA, length(n)) # the probability for each n

sim <- 5000 # the number of monte carlo simulations
trial <- rep(NA, sim) # the vector that stores simulated results (always the length of 1000)

for (i in 2:50) { # i stands for the size of the classroom, 2~50

birth <- rep(NA, i) # birthdays of students per each size, which change in every simulation

for (k in 1:sim){ # k -> 1 ~ 5000

for (j in 1:i) { # the length of the birthday should match the size of the classroom
birth[j] <- sample(1:365, 1, replace=T)
} # or just try: birth <- sample(1:365, i, replace=T)

jth loop is to show you the process with consistency

trial[k] <- ifelse(length(unique(birth))!=length(birth), 1, 0)
1 if at least two of them have common birthdays
0 if none shares birthdays

}

prob[i-1] <- sum(trial)/sim # i-1 in order to store the result of the classroom size of 2
as the first element of this vector

}

problem_3 <- data.frame(n=n, prob=prob)

ggplot(problem_3, aes(x=n, y=prob)) +
geom_point() +
labs(x="The size of the classroom",

y="Probability that at least two people in a classroom \n share the same birthday",
title="Probability that at least two people in a classroom share
the same birthday per each size of the classroom")

10

0.00

0.25

0.50

0.75

1.00

0 10 20 30 40 50
The size of the classroom

P
ro

ba
bi

lit
y

th
at

 a
t l

ea
st

 tw
o

pe
op

le
 in

 a
 c

la
ss

ro
om

 s

ha
re

 th
e

sa
m

e
bi

rt
hd

ay
Probability that at least two people in a classroom share
 the same birthday per each size of the classroom

11

	Problem 1: Working with profile likelihoods
	Answer 1a:
	Answer 1b:

	Problem 2: Writing and testing a useful new maximum likelihood estimator
	Answer 2a.:
	Answer 2b.:
	Answer 2c.:
	Answer 2d.:
	Answer 2e.:
	Problem 3: Solving the birthday problem using simulation
	Answer 3:
	Method 1: Use duplicated in
	Method 2: Use loop

