CSSS/POLS 510 MLE Lab

Lab 5. Binary Model, tile, and goodness of fit

Ramses Llobet

Agenda

- 1. Binary model
- 2. Qls with logit model
- 3. Overview of tile

0. MLE general notation

$$Y_i \sim f(\theta_i, \alpha)$$
 (stochastic) $\theta_i = g(\mathbf{x}_i \boldsymbol{\beta})$ (systematic)

where

- $ightharpoonup Y_i$ is a random outcome variable.
- ightharpoonup f(.) is a probability density function.
- \blacktriangleright θ_i is a systematic feature of the PDF that varies over i.
- ightharpoonup lpha is an ancillary parameter (feature of f that we treat as constant).
- ightharpoonup g(.) functional form for reparametrization of the data model.
- ▶ x_i explanatory variables vector.
- \blacktriangleright β vector of effect parameters.

1. Binary models

$$Y_i \sim f_{Bernoulli}(\pi_i)$$
 (stochastic) $\pi_i = g(\mathbf{x}_i \boldsymbol{eta})$ (systematic)

where

$$\pi_i = logit^{-1}(\mathbf{x}_i \boldsymbol{\beta})$$
 (systematic for logistic model) $\pi_i = probit^{-1}(\mathbf{x}_i \boldsymbol{\beta})$ (systematic for probit model)

1. Binary model:Overview

- 1. Obtain data
- **2.** Think model (distribution/covariates)
- 3. Fit model
- 4. Obtain ML estimates of it
- **5.** Interpret those estimates(Estimate QOI)
- 6. Test goodness of fit
- **7.** Present your results to a broad audience

2. Simulating Qol

In order to use simcf to generate quantities of interest, the following steps are needed:

- 1. Estimate: MLE \hat{eta} and its variance $\hat{V}(\hat{eta})$
- **2.** Simulate estimation uncertainty from a multivariate normal distribution:

Draw
$$\tilde{\beta} \sim MVN[\hat{\beta}, \hat{V}(\hat{\beta})]$$

3. Create hypothetical scenarios of your substantive interest: Choose valuese of X: X_c

2.1 Simulating Qol

4. Calculate expected values:

$$\tilde{\mu_c} = g(X_c, \tilde{\beta})$$

5. Simulate fundamental uncertainty:

$$\tilde{y_c} \sim f(\tilde{\mu_c}, \tilde{\alpha})$$
or

6. Compute EVs, First Differences or Relative Risks

EV: $\mathbb{E}(y|X_{c1})$

FD:
$$\mathbb{E}(y|X_{c2}) - \mathbb{E}(y|X_{c1})$$

RR: $\frac{\mathbb{E}(y|X_{c2})}{\mathbb{E}(y|X_{c1})}$

2. Simulating Qol

In order to use simcf to generate quantities of interest, the following steps are needed:

- **1.** Estimate: MLE $\hat{\beta}$ and its variance $\hat{V}(\hat{\beta})$ \rightarrow optim(), glm()
- **2.** Simulate estimation uncertainty from a multivariate normal distribution:

```
Draw \tilde{\beta} \sim MVN[\hat{\beta}, \hat{V}(\hat{\beta})]
```

- → MASS::mvrnorm()
- **3.** Create hypothetical scenarios of your substantive interest: Choose valuese of X: X_c

```
\rightarrow simcf::cfmake(), cfchange()...
```

2. Simulating Qol

4. Calculate expected values:

$$\tilde{\mu_c} = g(X_c, \tilde{\beta})$$

5. Simulate fundamental uncertainty:

```
	ilde{y_c} \sim f(	ilde{\mu_c}, 	ilde{lpha}) \ 
ightarrow 	ext{simcf}:: 	ext{hetnormsimpv}() \dots
```

6. Compute EVs, First Differences or Relative Risks EV: $\mathbb{E}(y|X_{c1})$ \rightarrow simcf::logitsimev()...

```
FD: \mathbb{E}(y|X_{c2}) - \mathbb{E}(y|X_{c1})

\rightarrow \text{simcf::logitsimfd()} \dots

RR: \frac{\mathbb{E}(y|X_{c2})}{\mathbb{E}(y|X_{c1})}
```

 \rightarrow simcf::logitsimrr()...

- ► A fully featured R graphics package built on the grid graphics environment.
- ► Features:
 - ► Make standard displays like scatterplots, lineplots, and dotplots
 - ► Create more experimental formats like ropeladders
 - Summarize uncertainty in inferences from model
 - Avoid extrapolation from the original data underlying your model
 - ► Fully control titles, annotation, and layering of graphical elements
 - ► Build your own tiled graphics from primitives
- ► Work well in combination with simcf package
 - Calculate counterfactual expected values, first differences, and relative risks, and their confidence intervals
 - ► Among others

- ► Three steps to make tile plots (from Chris's "Tufte Without Tears")
 - Create data traces: Each trace contains the data and graphical parameters needed to plot a single set of graphical elements to one or more plots
 - ► Could be a set of points, or text labels, or lines, or a polygon
 - Could be a set of points and symbols, colors, labels, fit line, Cls, and/or extrapolation limits
 - ► Could be the data for a dotchart, with labels for each line
 - Could be the marginal data for a rug
 - ► All annotation must happen in this step
 - Basic traces: linesTile(), pointsile(), polygonTile(),
 polylinesTile(), and textTile()
 - Complex traces: lineplot(), scatter(), ropeladder(), and rugTile()

- ► Primitive trace functions:
 - ▶ linesTile(): Plot a set of connected line segments
 - ▶ pointsTile(): Plot a set of points
 - ▶ polygonTile(): Plot a shaded region
 - ▶ polylinesTile(): Plot a set of unconnected line segments
 - ► textTile(): Plot text labels
- Complex traces for model or data exploration:
 - ► lineplot(): Plot lines with confidence intervals, extrapolation warnings
 - ropeladder(): Plot dotplots with confidence intervals, extrapolation warnings, and shaded ranges
 - ► rugTile(): Plot marginal data rugs to axes of plots
 - ► scatter(): Plot scatterplots with text and symbol markers, fit lines, and confidence intervals

- ► Three steps to make tile plots (from Chris's "Tufte Without Tears")
 - 1. Create data trace: Each trace contains the data and graphical parameters needed to plot a single set of graphical elements to one or more plots
 - Plot the data traces: Using the tile() function, simultaneously plot all traces to all plots
 - This is the step where the scaffolding gets made: axes and titles
 - ► Set up the rows and columns of plots
 - ► Titles of plots, axes, rows of plots, columns of plots, etc.
 - Set up axis limits, ticks, tick labels, logging of axes
 - **3. Examine output and revise**: Look at the graph made in step 2, and tweak the input parameters for steps 1 and 2 to make a better graph

3. Expected probabilities and first differences: Voting example

3. Expected probabilities and first differences: Voting example

3. Expected probabilities and first differences: Voting example

FIN