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Agenda

1. Binary model
2. QIs with logit model
3. Overview of tile

4. Goodness of fit
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0. MLE general notation

Yi ∼ f (θi , α) (stochastic)
θi = g(x iβ) (systematic)

where

▶ Yi is a random outcome variable.
▶ f (.) is a probability density function.
▶ θi is a systematic feature of the PDF that varies over i.
▶ α is an ancillary parameter (feature of f that we treat as

constant).
▶ g(.) functional form for reparametrization of the data model.
▶ xi explanatory variables vector.
▶ β vector of effect parameters.
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1. Binary models

Yi ∼ fBernoulli(πi) (stochastic)
πi = g(x iβ) (systematic)

where

πi = logit−1(x iβ) (systematic for logistic model)
πi = probit−1(x iβ) (systematic for probit model)
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1. Binary model:Overview

1. Obtain data

2. Think model (distribution/covariates)

3. Fit model

4. Obtain ML estimates of it

5. Interpret those estimates(Estimate QOI)

6. Test goodness of fit

7. Present your results to a broad audience
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2. Simulating QoI

In order to use simcf to generate quantities of interest, the
following steps are needed:

1. Estimate: MLE β̂ and its variance V̂ (β̂)
2. Simulate estimation uncertainty from a multivariate normal

distribution:
Draw β̃ ∼ MVN

[
β̂, V̂ (β̂)

]
3. Create hypothetical scenarios of your substantive interest:

Choose valuese of X: Xc

CSSS/POLS 510 MLE Lab



2.1 Simulating QoI

4. Calculate expected values:
µ̃c = g(Xc , β̃)

5. Simulate fundamental uncertainty:
ỹc ∼ f (µ̃c , α̃)
or

6. Compute EVs, First Differences or Relative Risks
EV: E(y |Xc1)
FD: E(y |Xc2) − E(y |Xc1)
RR: E(y |Xc2)

E(y |Xc1)
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2. Simulating QoI

In order to use simcf to generate quantities of interest, the
following steps are needed:

1. Estimate: MLE β̂ and its variance V̂ (β̂)
→ optim(), glm()

2. Simulate estimation uncertainty from a multivariate normal
distribution:
Draw β̃ ∼ MVN

[
β̂, V̂ (β̂)

]
→ MASS::mvrnorm()

3. Create hypothetical scenarios of your substantive interest:
Choose valuese of X: Xc
→ simcf::cfmake(), cfchange() . . .
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2. Simulating QoI

4. Calculate expected values:
µ̃c = g(Xc , β̃)

5. Simulate fundamental uncertainty:
ỹc ∼ f (µ̃c , α̃)
→ simcf::hetnormsimpv() . . .
or

6. Compute EVs, First Differences or Relative Risks
EV: E(y |Xc1)
→ simcf::logitsimev() . . .
FD: E(y |Xc2) − E(y |Xc1)
→ simcf::logitsimfd() . . .

RR: E(y |Xc2)
E(y |Xc1)

→ simcf::logitsimrr() . . .
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3. Overview of tile

▶ A fully featured R graphics package built on the grid
graphics environment

▶ Features:
▶ Make standard displays like scatterplots, lineplots, and dotplots
▶ Create more experimental formats like ropeladders
▶ Summarize uncertainty in inferences from model
▶ Avoid extrapolation from the original data underlying your

model
▶ Fully control titles, annotation, and layering of graphical

elements
▶ Build your own tiled graphics from primitives

▶ Work well in combination with simcf package
▶ Calculate counterfactual expected values, first differences, and

relative risks, and their confidence intervals
▶ More later
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3. Overview of tile

▶ Three steps to make tile plots (from Chris’s “Tufte Without
Tears”)

1. Create data traces: Each trace contains the data and
graphical parameters needed to plot a single set of graphical
elements to one or more plots

▶ Could be a set of points, or text labels, or lines, or a polygon
▶ Could be a set of points and symbols, colors, labels, fit line,

CIs, and/or extrapolation limits
▶ Could be the data for a dotchart, with labels for each line
▶ Could be the marginal data for a rug
▶ All annotation must happen in this step
▶ Basic traces: linesTile(), pointsile(), polygonTile(),

polylinesTile(), and textTile()
▶ Complex traces: lineplot(), scatter(), ropeladder(),

and rugTile()
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3. Overview of tile

▶ Primitive trace functions:
▶ linesTile(): Plot a set of connected line segments
▶ pointsTile(): Plot a set of points
▶ polygonTile(): Plot a shaded region
▶ polylinesTile(): Plot a set of unconnected line segments
▶ textTile(): Plot text labels

▶ Complex traces for model or data exploration:
▶ lineplot(): Plot lines with confidence intervals,

extrapolation warnings
▶ ropeladder(): Plot dotplots with confidence intervals,

extrapolation warnings, and shaded ranges
▶ rugTile(): Plot marginal data rugs to axes of plots
▶ scatter(): Plot scatterplots with text and symbol markers,

fit lines, and confidence intervals
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3. Overview of tile

▶ Three steps to make tile plots (from Chris’s “Tufte Without
Tears”)

1. Create data trace: Each trace contains the data and
graphical parameters needed to plot a single set of graphical
elements to one or more plots

2. Plot the data traces: Using the tile() function,
simultaneously plot all traces to all plots

▶ This is the step where the scaffolding gets made: axes and
titles

▶ Set up the rows and columns of plots
▶ Titles of plots, axes, rows of plots, columns of plots, etc.
▶ Set up axis limits, ticks, tick labels, logging of axes

3. Examine output and revise: Look at the graph made in step
2, and tweak the input parameters for steps 1 and 2 to make a
better graph
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3. Expected probabilities and first differences:
Voting example
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3. Expected probabilities and first differences:
Voting example
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4. Goodness of fit

4.1. Likelihood Ratio Test

4.2. Akaike Information Criterion

4.3. Bayesian Information Criterion
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4.1. Likelihood Ratio Test

Given two nested models:

M1 : logit−1(β0 + β1x1 + · · · + βixi)
M2 : logit−1(β0 + β1x1 + · · · + βixi + βi+1xi+1 + · · · + βi+jxi+j)

The likelihood ratio statistic tests the null hypothesis that the
additional parameters are equal to zero:

H0 : βi+1 = · · · = βi+j = 0
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4.1. Likelihood Ratio Test

The likelihood ratio statistic is the difference in the deviances of
M1 and M2, where the deviance is -2 multiplied by the log
likelihood of the model at its maximum:

D(M) = −2 log L(M)
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4.1. Likelihood Ratio Test

Then, we draw LR:
LR = −2 log L(M1)

L(M2)
The likelihood ratio statistic follows a Chi-squared distributed with |M1|
- |M2| degrees of freedom, where |M∞| is the number of parameters in
model M∞.

You can evaluate like: “Since the p-value is smaller than 0.05, we reject
the null hypothesis, and we favor the more complex model M2 to M1.
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4.2 Akaike Information Criterion

For non-nested models, we cannot use likelihood ratio tests.
Instead we turn to several information theoretic measures to assess
model fit, which can be thought of as penalized LR tests.

The Akaike Information Criterion (AIC) is defined as follows:

AIC(M) = D(M) + 2 × |M|

Or -2 times the log likelihood of the model at its maximum plus 2
times the number of parameters.

A model with a smaller AIC is preferred. Why?
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4.2 Akaike Information Criterion

Smaller is better: This is because the first part, D(M), will be
lower as the likelihood increases, but it also always decreases as
more variables are added to the model.

The second part, 2 × |M|, always increases as more variables are
added to the model, and thus penalizes the first part.

Put together, the two parts create a balance between fit and
complexity.
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4.3 Bayesian Information Criterion

The Bayesian Information Criterion (BIC) is similar to the AIC but
penalizes the deviance in a different way:

BIC(M) = D(M) + log(n) × |M|

Or -2 times the log likelihood of the model at its maximum
multiplied by log(n) times the number of parameters. In this case,
the penalty considers the number of observations and the number
of variables.
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4.3 Bayesian Information Criterion

The BIC is based on a Bayesian comparison of models proposed by
Raftery (1996).

Recall Bayes theorem:

P(θ|y) = P(y |θ)P(θ)
P(y)[

P(M1|Observed Data)
P(M2|(Observed Data)

]
≈

[
P(Observed Data|M1)
P(Observed Data|M2) × P(M1)

P(M2)

]
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4.3 Bayesian Information Criterion

If we assume that P(M1)
P(M2) = 1, Raftery shows that

2 log
[

P(Observed Data|M1)
P(Observed Data|M2)

]
≈ BICM2 − BICM1

A model with a smaller BIC is again preferred.
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4.3 Bayesian Information Criterion

Raftery’s suggested guidelines for the strength of evidence favoring
BICM1 over BICM2 are as follows:

Absolute Difference Evidence
0-2 Weak
2-6 Positive
6-10 Strong
>10 Very Strong
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Next lab

▶ More Goodness of Fit for binay models.
▶ Ordinal Probit.
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