CSSS/POLS 510 MLE Lab
Lab 2. Intro to RMarkdown and Overleaf

Ramses Llobet

October 6, 2023
Agenda

1. Pre-view **Problem Set 1**
2. Intro to \TeX\ and \LaTeX\
3. R Markdown
4. Lab code practice.
5. \LaTeX\ and Overleaf
Pre-view Problem Set 1

► Let’s quickly look over PS1.
Intro to \TeX and \LaTeX

\TeX is a \textit{typesetting engine}\footnote{Modern extensions of the \TeX engines include pdf\TeX, Xe\TeX, Lua\TeX, etc.} designed by Donald Knuth, a computer scientist and mathematician at Stanford.

\begin{itemize}
 \item For typesetting scientific text and mathematical formulas
\end{itemize}
Intro to \TeX and \LaTeX

\LaTeX is a *document preparation system, or a macro package*, built on top of the \TeX engine, with features:

- Typesetting journal articles, technical reports, books, and slides
- Control over large documents containing sectioning, cross-references, tables and figures
- Typesetting of complex mathematical formulas
- Advanced typesetting of mathematics with AMS-\LaTeX
- Automatic generation of bibliographies and indexes
- Multi-lingual typesetting
- See more [here](#)
Intro to \TeX and \LaTeX

- Popular implementations, or distributions, of \TeX/\LaTeX
 - MacTeX for Mac OS: http://www.tug.org/mactex/
 - MiKTeX for Windows: https://miktex.org
Intro to \TeX\ and \LaTeX

\LaTeX vs. other word processors (e.g. Microsoft Word)

- Microsoft Word/Power Point
 - You interact with a user interface to control the document layout while typing text
 - What is displayed on the screen resembles what will be printed

\LaTeX

- You provide “\LaTeX commands” to specify the layout, structure, and details of the document:
 - \texttt{\command[optional parameter]{parameter}}
 - And \textit{typeset} the document using the \TeX engine and compile the output
Intro to \textsc{TeX} and \textsc{LaTeX}

- The input for \LaTeX is a plain text file (.tex)
 - You need a text editor!
- Numerous popular text editors
 - Specific: Texmaker, TeXShop, TeXstudio, TeXworks...
 - Generic: Emacs (Aquamacs), Vim, Sublime, Atom...
RMarkdown

► All the above sound pretty complicated...
► Instead, we can use RMarkdown as text editor!
► Some useful resources:
 ► Cheat Sheet for RMarkdown.
 ► For an general introduction for RMarkdown, look at Chapter 27 from Wickham and Grolemund (2017) - R for Data Science.
 ► If you want a more comprehensive guide, then check Xie et al. (2023) - R Markdown: The Definitive Guide.
 ► Another, more applied, resource is Xie et al. (2023) - R Markdown Cookbook.
RMarkdown

RMarkdown is a document format that allows you to integrate R code and output into a single document.

Besides R code and output, it can also include text, images, and other multimedia elements, allowing for rich and informative documents.

Pandoc is a free and open-source document converter that can convert documents from one markup language to another.

In the context of Rmarkdown, pandoc is the underlying document converter (software) that converts the R-markdown file into a final output format, such as HTML, PDF, or Word.
RMarkdown

- The output format of the final document can be customized using options in the **YAML header** or external templates.

```yaml
---
title: "Lab 1 - Intro to RMarkdown"
author: "Your name"
date: \today
output:
  pdf_document:
    latex_engine: pdflatex
  fontsize: 12pt
editor_options:
  chunk_output_type: console
---
```

- The YAML header in RMarkdown is a block of configuration settings at the beginning of the document enclosed by three hyphens (---).
- It is used to specify document metadata and other settings such as the document title, author, output format, and more.
RMarkdown

- **Code chunks** are sections of R code that can be executed and embedded within an RMarkdown document.

To insert an R code chunk, use the shortcut key:
- Windows: Ctrl + Alt + I
- macOS: Cmd + Option + I

- Code chunks can be customized with various **chunk options**.
Frequently used chunk options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>include</td>
<td>If FALSE, knitr will run the chunk but not include the chunk in the final document.</td>
</tr>
<tr>
<td>echo</td>
<td>If FALSE, knitr will not display the code in the code chunk above it’s results in the final document.</td>
</tr>
<tr>
<td>error</td>
<td>If FALSE, knitr will not display any error messages generated by the code.</td>
</tr>
<tr>
<td>message</td>
<td>If FALSE, knitr will not display any messages generated by the code.</td>
</tr>
<tr>
<td>warning</td>
<td>If FALSE, knitr will not display any warning messages generated by the code.</td>
</tr>
</tbody>
</table>
Recommendation for Homework

<table>
<thead>
<tr>
<th>Option</th>
<th>HW setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>include</td>
<td>TRUE</td>
</tr>
<tr>
<td>echo</td>
<td>TRUE</td>
</tr>
<tr>
<td>error</td>
<td>FALSE</td>
</tr>
<tr>
<td>message</td>
<td>FALSE</td>
</tr>
<tr>
<td>warning</td>
<td>FALSE</td>
</tr>
</tbody>
</table>

▶ **Note**: set the function `knitr::opts_chunk$set()` with any general setting without repeating it in every code chunk.
Knitting

▶ In RMarkdown, **rendering** a document means converting the source RMarkdown file into its final output format (using pandoc).

▶ To render a document, we need to **Knit**, knitting is the process of taking the RMarkdown file and converting it into a single, cohesive document that can be rendered into different formats (HTML, PDF, etc).

▶ To produce **PDF file**, you need TeX files.

▶ Easy way: Install the tinytex package: `install.packages("tinytex")`. Then run `tinytex::install_tinytex()`.
Knitting

▶ To knit:

▶ Auxiliary window for output preview:
Code practice

1. Open R-Markdown file `RMarkdownSample.Rmd`, we will review the code together.

▶ Please note that the Lab Code key solutions are not included in the compressed ZIP file. I will upload the key along with the lab recording within 24 hours after completing the lab.
Intro to \LaTeX\ with Overleaf

- Alternatively, we have Overleaf: \url{https://www.overleaf.com/}
 - An online \LaTeX\ editor
 - Integrated PDF preview pane
 - Quality of life features: auto-complete commands, auto-close brackets, keyboard shortcuts, etc.
 - Numerous templates: journal articles, books, CVs, slides, posters, etc.
 - Easy collaboration (But not free)
 - Integrated with Zotero and Mendeley for bibliography management
 - Integrated with Git for version control
Intro to \LaTeX with Overleaf

▶ Before we dive in, useful resources
 ▶ The Not So Short Introduction to \LaTeX 2ε (Oetiker et al., 2023)
 ▶ Learn \LaTeX in 280 pages / minutes
 ▶ ‘Overleaf’ documentation
 ▶ Contains intro to basic \LaTeX, Overleaf, and many practical guides
 ▶ \TeX at StackExchange
 ▶ General: Mathematics and Tables and TikZ
 ▶ Beamer Theme: here
 ▶ Bibliography: natbib, doi2bib, text2bib
 ▶ Other: here
Intro to \LaTeX with Overleaf

Some useful templates:

- Thesis: [here](#)
- Homework: [my sample](#)
- Working paper: [Kenya’s sample](#) and [Chris's sample](#)
- Academic journal: [here](#)
- Presentation slides (Beamer): [here](#) and [here](#)
- Poster: [here](#)
- CV: [here](#) and [here](#)
- Graphs, trees, diagrams (TikZ): [here](#) and [here](#)