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Abstract. The prevalence and spread of online misinformation during the

2020U.S. Election served to perpetuate a false belief in widespread fraud.

Though much research has focused on how social media platforms con-

nected people to related rumors and conspiracies, less is known about

the search engine pathways that linked users to news content with the

potential to undermine trust in elections. In this paper, we present novel

data related to the content of political headlines during the 2020 U.S.

Election period. We scraped over 800k headlines from Google’s search

engine results pages (SERP) in response to 20 election-related keywords

— 10 general (e.g., ‘Ballots’) and 10 conspiratorial (e.g., ‘Voter fraud’)

— when searched from 20 cities across 18 states. We present results

from qualitative coding of 5,600 headlines focused on the prevalence

of delegitimizing information. Our results reveal videos (compared to

stories, search results and advertisements) to be the most problematic

in terms of exposing users to delegitimizing headlines. We also illustrate

how headline-content varies when searching from a swing state, adopting

a conspiratorial search keyword, or reading from media domains with

higher political bias. We conclude with policy recommendations on data

transparency that allow researchers to continue to monitor search en-

gines during elections.

1 Introduction

Despite no evidence that widespread fraud occurred during the recent US elections (Cy-

bersecurity & infrastructure security agency 2021; Saranac Hale Spencer 2020; Cyber-

security & infrastructure security agency 2022), as reiterated in testimony by former

Attorney General Bill Barr (Thompson, Cheney, and Zoe 2022), there remains skepticism

among the public about the legitimacy of the election results. Following the election

nearly 65% of the Republican voters believed that the results of the 2020 U.S. General

1. These authors led and contributed equally to this research.
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Election were illegitimate (Pennycook and Rand 2021). During the 2018 midterm elec-

tions, voters who cast their votes using mail-in ballots were skeptical as to whether their

votes would be counted correctly (Alvarez, Cao, and Li 2021). Though considerable effort

has been spent studying how social media platforms served to connect people to conspir-

acies, rumors, and misinformation related to unsubstantiated voter fraud, less is known

about how and what kind of political content is spread through search engines.

Search engines are the doors to information and news on the internet. In 2020, 65%

of Americans used search engines as a primary source to gather news and informa-

tion (Shearer 2021), of which Google has a global market share of over 90% (StatCounter

2021). As evidencedby ‘election results’ and ‘coronavirus’ constituting the top two search

terms on Google in 2020 2, search engines have a tremendous potential to provide ac-

cess to critical information that can influence democratic discourse. This is particularly

true during election periods — in particular, the 2020 U.S. General Election — when

political polarization, COVID uncertainty, and demand for election information were all

high (Kapferer 1987; Bordia and DiFonzo 2017; Starbird, Spiro, and Koltai 2020).

The 2020 U.S. election gave rise to several narratives that cast doubt on the legitimacy of

the results. Several official organizations, including the Cybersecurity and Infrastructure

Security Agency, have debunked these narratives and confirmed in December, 2020

that it was indeed a ‘secure election’ (Cybersecurity & infrastructure security agency

2021, 2022; Saranac Hale Spencer 2020). Despite the acknowledgment of confidence

in the election by several Government officials and elected leaders, both Democratic and

Republican (Brennan Center for Justice 2020), unproven andmisleading election-related

narratives were (and some remain) widely available online. The goal of this paper is

to investigate whether and potentially how Google served as a gateway to content that

may have undermined trust in election processes, institutions, and results. We conducted

an audit of headlines appearing in Google’s SERPs in response to several search terms

before, during, and after the 2020 U.S. Election. Specifically, our research was guided by

the following questions:

• Question One: How do the SERP verticals — search results, stories, videos and

advertisements — differ in the amount of misleading content?

• Question Two: How does one’s location in a specific city — split by population and

party representation — change the kind of election content found in search results?

• Question Three: Do different search terms lead to different search result quality?

• Question Four: Which online news domains served as the most frequent gateways

to content that may have undermined trust during the election period?

To answer these questions, we focused on news headlines from Google’s SERP data

(Figure 1). The headline of a news story is known to influence user interpretation of the

story’s content (Tannenbaum 1953) and impact its popularity (Rieis et al. 2015). We

collected headlines using election-related search keywords as seen on Google’s search

engine across 20 locations spread throughout the U.S. Since Google does not officially

support a search API, and other services do not support location-specific requests, we

resorted to a third party paid service called SerpAPI (SerpApi 2020). This service allowed

us to perform searches so that the results were associated with the locations of our 20

selected sites, rather than the results that Google would normally associate with the

geographic location of our local IP address. Our collection of the data commenced prior

to the election in early October and ran through mid-December 2020. We performed an

extensive qualitative analysis of a random sample of 5,600 headlines from over 500k

SERP search results, 242k SERP stories, 62k SERP videos, and 47k SERP advertisements

2. https://trends.google.com/trends/yis/2020/US/
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to evaluate the potential of SERP data to undermine trust in the election. In addition

to the analysis, we make the raw Google SERP data corresponding to election-related

keywords across several disparate U.S. locations openly available to further analysis by

other researchers 3.

Figure 1: Two example screenshots of Google SERP data if a user were to search for

‘voter fraud’. We collected the headlines and metadata for both the search results and all

three top stories pictured here on the left. In addition, we also collected the headlines

and metadata for all the three videos and the only advertisement pictured here on the

right. Overall, we collected first ten search results, top ten stories, top ten videos and all

the advertisements returned by the search engine in response to all keywords.

From these searches and our subsequent coding of reported headlines, we found that

the headlines of the video content reported in our Google search engine homepage

contained a disproportionate amount of undermining-trust content when compared

to alternative SERP-verticals (search results, stories, and advertisements). Although

swing states received more campaign advertisements than non-swing states, user’s

location generally did not moderate the quality of information served by search engine

headlines. We also found that the headlines displayed on the homepage weremore likely

to undermine trust when searches included conspiratorial election-related terms (e.g.,

‘Voter fraud‘, ‘Rigged election’, etc.) as opposed to general election-related terms (e.g.,

‘Ballots’, ‘Where do I vote’, etc.), as well as if the headlines were associated with media

domains with a relatively more right-leaning bias. Upon investigating the mainstream

media headlines specifically, we found that legacy news sites with large audiences like

CNN and Fox News played an outsized role in delivering content with the potential to

undermine trust. Finally, we present the topics that were the focus of trust-undermining

and trust-imparting content across our coded sample.

Our work builds upon previous work that has emphasized the influence of online electoral

content in altering perceptions about the legitimacy of the 2020 U.S. General Election.

First, we present a novel dataset consisting of geographically and topically distinct

search results presented by Google prior to, during, and following, November 3rd, 2020.

Second, we developed a coding scheme for assessing the content of headlines in SERP

data and its role in undermining trust that can serve as a template for future studies.

Third, using our coding scheme, we analyze the political content likely presented to a

large number of users on Google’s platform before, during, and shortly after the election.

3. Data is available on the Open Source Foundation.

https://osf.io/5gj2r/?view_only=26467eb4d4bc4ddd97a78f63a6c31ecb
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From this analysis, we identify the topics, domains, and search patterns of election-

delegitimizing content. We conclude with recommendations focused on open, auditable,

and anonymized data for investigating these research questions in future elections.

2 Background: 2020 Election Delegitimization

2.1 Significance of news headlines

News headlines, along with other forms of content collected in Google search results,

play a critical role in conveying information and creating impressions. For news head-

lines specifically, a survey conducted nearly a century ago found that out of 375 people,

192 based their opinions about news from the reading and skimming of the headlines

only (Emig 1928). The importance of headlines in the conveyance of content has per-

sisted as news has shifted online. Psychologists have known that early impressions

matter and that early biases affect users in what they learn in further impressions of

the artifact (Digirolamo and Hintzman 1997). Based on analysis of about 70k headlines,

Reis et. al confirmed that the sentiment of the headline could have a serious impact on

how popular the story might become and the kind of discourse it encourages (Rieis et

al. 2015). These projects have reiterated how headlines can serve as influential shortcuts

for readers that can subsequently guide their interpretation of the news (Tannenbaum

1953).

Misleading content, even if misleading only to a small extent, can bias interpretation of

events, such as elections. This is why they are often used to frame real world events in a

particular light (Jamieson, Hardy, and Romer 2007; Liu et al. 2019). Framing strategies

have often been employed—as was tracked during the 2004 Canadian Federal election—

to select aspects of particular news stories that increase the salience of the writer or

news source’s chosen perspective (Andrew 2007). By inducing bias amongst readers,

exposure to misleading headlines can limit the capacity of its audience to process cor-

rected information, thereby impacting their memory and reasoning (Ecker et al. 2014).

Complicating matters further, readers have a tendency to over-weight headlines that are

consistent with their social and political attitudes (Beam 2014) while choosing to focus

on headlines that they perceive to be true a priori (Edgerly et al. 2020), leaving readers

vulnerable to misleading headlines that align with partisan values. The challenge posed

by misleading headlines has been exacerbated by growing use of social media platforms,

where headlines are often prominently displayed as a substitute for the actual content

of the article (Gabielkov et al. 2016). In fact, there is little incentive for platforms to

push users off the platform to the actual article. Despite these growing concerns, little is

known about the role of the content of headlines appearing in different SERP verticals

(e.g., stories vs videos) during elections to undermine voter trust. This is the focus of our

research.

2.2 Role of Google search in shaping user opinion

Google search is the most commonly used search engine (StatCounter 2021) and there-

fore the focus of numerous studies into search engine function and performance. A

recent study found that Google fares better in limiting the promotion of conspiratorial

results as well as the presentation of links to conspiracy-dedicated websites when com-

pared with other search engines like Bing, DuckDuckGo, Yahoo and Yandex (Urman

et al. 2021). Despite relatively higher resilience to conspiratorial content, concerns

remain regarding bias evident in Google search results (Robertson et al. 2018). These

potential biases are of concern to election integrity advocates, who have shown that
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Google search engine has in the past privileged certain topics in its news-homepage

(including a disproportionate presentation of articles detailing the 2016 Trump campaign

over his challengers) (Diakopoulos et al. 2018)4.

When investigating Google’s role in shaping user attention to the news, Trielli et. al found

a small skew towards the political left in Google search results (Trielli and Diakopoulos

2019). Although the diversity of the media sources varied by topic, a small fraction of

the media contributed about 50% of the overall suggestions in the top stories. Similarly,

recent research has found that small number of sources contributed majority of the

stories about 2020 U.S. Presidential election coverage on the Google SERPs (Kawakami,

Umarova, and Mustafaraj 2020). Epstein et al. (Epstein and Robertson 2015) showed

that a search engine manipulation effect (SEME) — i.e., influencing user behavior through

manipulation of search results by search engine providers — can impact the outcomes of

elections. Voting preferences can be strongly influenced in favor of a candidate (20% or

more) by showing biased search results biased towards a particular candidate (Epstein

and Robertson 2015; Spenkuch and Toniatti 2016).

Search engines can impact user perception about credibility of the news not only through

the selection of stories (and sources) on the homepage, but also through the rankings

in which these stories appear. A higher position in the ranking of a (SERP vertical) story

impacts user decisions more, even if it is less relevant to the topic of the user’s search,

than another story that appears at a lower rank (Pan et al. 2007). Researchers have also

questioned the role played in the presentation of content across different information

modalities including text, stories, videos across several platforms. Though recent work

has suggested that video contentmay not be as persuasive aswas once feared, users tend

to believe in a videomore easily than in text (Wittenberg et al. 2021). Given the increased

prevalence of video-based misinformation, there is a shared belief amongst researchers

that the real extent of persuasiveness of videos might diverge in real settings that are

not lab-controlled. For example, when comparing the role of text versus video modality

within messaging apps, researchers found that users process videos superficially and

tend tomore influenced by it compared to text (Sundar, Molina, and Cho 2021). Based on

this result, we compare the different SERP verticals — e.g., news, stories, search results

and ads — in our study.

2.3 Auditing as a method to trace mis/disinformation

Algorithms of platforms like Twitter and Reddit facilitate amplification of problematic con-

tent by bringing more attention of the users to problematic content (Fernández, Bellogı́n,

and Cantador 2021; Shepherd 2020). Researchers have employed auditing mechanisms

to investigate such role of algorithms. Audits have shown how YouTube deploys algo-

rithms with the potential to lure people down conspiracy ‘rabbit holes’ by continuously

suggesting related content (Rodriguez 2018; Albright 2018; Hussein, Juneja, and Mitra

2020). Auditing techniques have found that even e-commerce platforms like Amazon

can promote a filter bubble effect, where users who browsed anti-vaccination content

on the the platform received relatively more suggestions promoting similar content than

those who did not (Juneja and Mitra 2021).

Researchers have expressed hope in the use of auditing method to witness and under-

stand why some of the unwanted platform behaviors occur (Simko et al. 2021). For

example, prior investigation focused on understanding Google search engine’s behavior

has shown that searching for specific queries that have limited authoritative information

(i.e., data voids) can lead to easy discoverability of conspiratorial websites (Bradshaw

4. Diakopoulos et. al found that during the 2016 U.S. elections, Google News had 941 indexed articles about

Trump, 710 about Clinton, and 630 about Sanders (Diakopoulos et al. 2018)
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2019). In order to expand our understanding of how search engines can lead users

to misleading content, we conduct an audit of Google SERP data focused on election

content during the 2020 electoral period.

3 Data Collection

Search terms: To conduct our analysis, we generated a list of election-related search

terms in October of 2020 (see Table 1). These terms were used to assess differences

in headlines related to different SERP verticals: search results, news, advertisements,

and videos. We split our terms into two distinct categories. The first category of search

terms aimed to capture the results produced when searching for general election-related

content. This included terms such as “presidential election” as well as common election

questions such as “where do I vote”. We also included a second category of terms

targeting electoral conspiracies identified across existing misinformation narratives. This

list was designed to mimic potential searches focused on issues related to the legitimacy

of election processes and results. As the list was developed in advance of the election

in September, it was informed by prior political controversies and online rumors and

does not include terms related to conspiracies such as Sharpiegate, which only became

relevant after election day5. As such, it was comprised of both general conspiratorial

phrases such as “election fraud” and “stolen election” as well as more specific actions

such as “voter fraud” and “ballot dumping”.

General Terms Conspiratorial Terms

Election results Rigged election

Ballots Late ballots

How do I vote Voter fraud

Where do I vote Voter intimidation

Mail-in voting Election fraud

My ballot Electoral fraud

Absentee ballot Stolen election

Presidential election Ballot harvesting

Vote by post Ballot dumping

Vote Mail dumping

Table 1: Election-related search terms fed into Google’s search engine. Ten of the

search terms were general election terms, and the other ten terms were terms linked to

conspiracies related to the 2020 U.S. Presidential Election.

Search locations: Google customizes its search results based on geographic location

(Rogers 2013). The results of a search for the terms ‘election results’ in Los Angeles, for

example, could be different than the results of the same search in Topeka, Kansas. These

differences can, in turn, shape geographic differences in how individuals think about

and behave, since search results can both prime audiences to think about certain issues

and frame how they think about those issues (Zook and Graham 2007). However, the

exact relationship between search customization and local understandings of emerging

news events remains understudied (Ballatore, Graham, and Sen 2017). To contribute in

this area, we developed a purposive sampling approach to collect search results across

5. The 2020 Sharpiegate conspiracy, which claimed that sharpies were being deliberately distributed to

Republican voters in order to invalidate their votes, is distinct from the prior controversy related to Donald

Trump’s use of a sharpie on a weather map displaying the trajectory of Hurricane Dorian in 2019.
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locations in the US that varied by region and degree of urbanization. Social scientists

have long explored how shared economies and cultural traditions produce regional socio-

political identities, and urban-rural divides have emerged as an evenmore salient variable

in shaping current partisan politics in the US (Gimpel et al. 2020).

Figure 2: Geographic spread of the 20 cities across which we scraped the Google search

results for search terms enlisted in Table 1.

MapID City, State Size Swing MapID City, State Size Swing

1 Los Angeles, CA UA N 11 Cedar Falls, IA UC N

2 Seattle, WA UA N 12 Santa Claus, IN RA N

3 Vail, CO UC N 13 Atlanta, GA UA Y

4 Grass Valley, OR RA N 14 Miami, FL UA Y

5 Houston, TX UA N 15 Morrilton, AR UC N

6 Phoenix, AZ UA Y 16 Berry, AL RA N

7 Clarksville, TX UC N 17 New York, NY UA N

8 Fort Davis, TX RA N 18 Philadelphia, PA UA Y

9 Chicago, IL UA N 19 Poughkeepsie, NY UC N

10 Detroit, MI UA Y 20 Eastport, ME RA Y

Table 2: Our data collection includes Google SERP data as rendered in these 20 cities

spread across 18 states in the USA. UA refers to urban areas, UC refers to urban clusters,

and RA refers to rural areas. Y or N refers to whether it was a swing state, or not.

To select locations, we first divided the U.S. into Northeast, Southeast, Southwest, Mid-

west, andWest Regions, drawing on a common five region classification schema (National

Geographic 2009). Within each of those regions, the project identified four locations

that represented varying levels of urbanization. Here we used the U.S. Census Bureau’s

classification of locations as urbanized areas (UAs) of 50,000 or more people; urban

clusters (UCs) with populations between 50,000 and 2,500; and rural locations that have

a population under 2,500 (US Census Bureau 2010). For each region we chose two UAs,

one UC, and one rural location. We chose to over-represent UAs because there tends to

be more election-related news and activity related to more densely populated locations,

allowing us to better examine regional differences across these larger markets. However,

we also attempted to select UAs within each region such that they also varied in size,

with one containing a population of several million and the other a population close to
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one million. The researchers selected specific locations within this framework, based

upon their knowledge of interesting news having emerged from those locations as shown

in Figure 2. Our hope was that this would produce a richer dataset. We also strove to

select locations that were diverse in regards to partisan political orientation. In many

instances, our first choice rural locations were not found within the API that we were

using for data collection. In these instances, we chose a nearby city that could be found

within the API. This process resulted in 20 locations, as enlisted in Table 2.

Search service: Google does not officially support any search API and other search-

services do not allow easy access to location-specific SERP data. While we had access

to a white-listed IP address to crawl unlimited Google SERP data, this data would have

reflected SERP results as seen from that specific location. To accommodate location as

a factor in SERP-related audits, prior research resorted either to using browser-based

plugins (Robertson et al. 2018) (limiting the data collection to queries adopted by select

users at specific times), or tomaking data requests frommultiple locationswith unique IP-

addresses (Mustafaraj, Lurie, and Devine 2020) (limiting the scalability to only a couple of

unique locations). To overcome these limitations, we used the SerpApi platform (SerpApi

2020) to search for keywords of our choice mentioned in Table 1 at regular intervals

each day and fetched the corresponding Google search results as it would be seen at the

twenty unique locations 2.

SerpApi is a real-time API to scrape Google SERP data with an option to choose a specific

search location (out of the available choices) without any adjustments based on the

location of researcher’s IP-address. We did a preliminary check for generic keywords

like “School”, “Cafe” and “Museum” to confirm the location specific differences of the

SERP data returned by the API. We were able to observe similar variations even for the

election-related search keywords that we used in this research. For example, searching

for the keyword “Vote” at the same time and day returned a headline “How to vote the

new way in L.A. (in 2020)” when we specified Los Angeles, California as the location, but

returned “How to Vote In Colorado” when we specified Vail, Colorado as the location.

We used the paid version of the API to make about fifty thousand unique searches per

day. We make this data openly available for future research projects6.

Search schedule: We intended to scrape the SERP data several times a day to capture

news headlines soon after they are released by different media sources. As we begin the

collection, we collected data four times everyday (3:00, 9:00, 15:00, 21:00 EST) between

October 5th and October 29th, 2020. Later, we reduced this frequency to three times a

day (00:00, 08:00, 16:00 EST) from October 30th to December 3rd, 2020 to fit within

the constraint of fifty thousand allowed searches based on our service subscription and

required searches for a related research project. Even with the reduced daily frequency,

we were able to capture news headlines in the morning, evening and late night (EST) as

intended.

Overall collection: For every search, we collected first ten search results, top ten news

stories, top ten videos and all the advertisements returned by the search engine in

response to a search keyword, which ismore than the information rendered on theGoogle

SERPs as seen by the user and illustrated in Figure 1. It included the headlines of all the

components and corresponding attributes like website-link, domains, date and time of

publishing (for videos and stories) etc. as seen on the Google search engine. Overall,

our initial collection consisted of 56,763 unique location specific keyword searches.

Across these searches, we collected about 47k advertisements, 500k search results,

240k stories and 66k videos.

Given that higher ranked results are known to influence user decisions (Joachims et

6. We have made the data available on the Open Source Foundation.

https://osf.io/5gj2r/?view_only=26467eb4d4bc4ddd97a78f63a6c31ecb
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al. 2007; Brooks 2004; Lorigo et al. 2008), we decided to focus on the top five search re-

sults, top three news stories, top three videos, and all included advertisements. Focusing

on the higher ranked results across varying SERP verticals — comprising of 485,805 re-

sults — allowed us to inspect headlines that weremore influential towards impacting user

opinions. These contained 47k advertisements (same as before since we always consid-

ered all the advertisements), 283k search results, 242k stories and 36k videos.

For each combination of search keyword and search location, we now had either three or

four SERPs per day depending on the frequency of collection during that time. For each of

that combination, we then randomly selected one SERP per day to make the data sample

size more manageable and ensure even distribution of headlines across the duration

of 2 months. This reduced our sample to 174,511 total headlines including about 14k

advertisements, 97k search results, 41k stories and 20k videos. Table 3 summarizes the

steps that we took to filter the sample of headlines.

Step# Procedure Resultant data sample

Step 1 Collected SERPs (10 search results, 10 sto-

ries, 10 videos and all ads) for 20 search

keywords (Table 1) as seen at 20 locations

(Table 2) several times a day using Ser-

pAPI.

56,763 unique location spe-

cific SERPs; About 47k ads,

500k search results, 240k

stories and 66k videos.

Step 2 To focus on data that easily appears on

SERPs without any extra user-clicks, we

selected the top 5 search results, top 3

stories, top 3 videos, and all ads.

About 47k ads, 283k search

results, 242k stories and 36k

videos.

Step 3 For each combination of search keyword

and search location, we randomly chose

exactly one SERP per day.

About 14k ads, 97k search

results, 41k stories and 20k

videos. Summary statistics in

Table 4.

Step 4 Using stratified random sampling tech-

nique, we split the Oct-Dec 2020 duration

into four 2-week long periods and selected

50 SERP headlines per combination of lo-

cation type (2 urban areas, 1 urban cluster,

1 rural area), SERP vertical type (result,

stories, videos, ads) and search term type

(general, conspiratorial).

1,600 stories, 1,600 videos

and 1,600 searches across

4 time periods and 800 ads

across the first 2 time peri-

ods; out of the 5,600 SERP

headlines (as per power anal-

ysis), we qualitatively coded

2,438 unique ones.

Table 3: Step-wise illustration of how we sampled the headlines in our SERP data to

make it suitable for qualitative coding.

Filtered collection for qualitative coding: After we collected the data, we assigned

a label and coded each headline into different categories. Although same headline

could appear multiple times in our data—e.g., the headline “Voter Fraud Map: Election

Fraud Database” appeared once in relation to Atlanta (Georgia) and then in relation to

Cedar Falls (Iowa)—we only coded unique headlines. To filter the 174,511 headlines

and generate a set that is small enough for manual-coding but large enough to allow the

use of inferential statistics, we conducted a power analysis using the G-power tool (Faul

et al. 2007). Given that the assigned codes served as the outcome variables, we chose

a two-tailed a priori analysis for the z-test family suitable for logistic regression and

discovered that we need a sample size of 5,408 headlines—assuming a minimal effect

size corresponding to odds ratio of 1.1 with about 80 percent power.
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Median number of headlines per day across 20 locations.

Search Results Stories Videos Advertisements

Search Keyword (Top 5) (Top 3) (Top 3) (All)

Absentee ballot 100 54 0 55.5

Ballot dumping 100 0 3 1

Ballot harvesting 100 57.5 13.15 3.5

Ballots 100 60 45 38.5

Election fraud 100 60 6 44

Election results 100 60 28.5 22

Electoral fraud 100 60 0 25

How do I vote 100 0 0 32.5

Late ballots 100 56.5 0 14

Mail dumping 100 0 57 0

Mail-in voting 100 60 25.5 51

My ballot 100 28.5 0 14

Presidential election 100 60 51 19.5

Rigged election 100 60 15 55.5

Stolen election 100 55 1.5 20

Vote 100 60 30 25.5

Vote by post 100 0 0 25.5

Voter fraud 100 60 24 57

Voter intimidation 100 54 9 3

Where do I vote 100 0 0 27.5

Table 4: Summary statistics of SERP data separated by SERP verticals and search key-

words. Given the skewed nature of the data — e.g., while searching for “Electoral fraud”

returned a maximum of 75 ads (October 5, 2020), searching for “Ballot dumping” only

returned a maximum of 3 ads (October 8, 2020) across different locations — we report

the median measure as our choice of summary statistic. A median score of 0 indicates a

relatively lesser (but non-zero) number of headlines for the corresponding keyword.

To ensure that the data evenly represented the different search terms, search locations

and information modalities, but was not biased either by the time or the day when it was

scraped, we opted for a stratified random sample. We split our timeline into 4 two-week

long periods Oct. 5-19, Oct. 20-Nov 3, Nov. 4-18, and Nov. 19-Dec 3 such that each

period contributed evenly to our sample. We next set out to select 50 search instances

per combination of city type (2 urban areas, 1 urban cluster, 1 rural area), SERP vertical

type (result, stories, videos, ads) and search term type (general, conspiratorial) — thus,

selecting 1,600 headlines for each of the 4 time periods that will overall exceed the

sample size of 5,408 as suggested by the power analysis. Unfortunately, we could not

fetch 1,600 headlines from advertisements since: (1) there were no advertisements

for any of the issue-specific terms in the third and fourth time period after November

4 and (2) Google did not surface 50 advertisements per city type even for the regular

search terms. To overcome this asymmetry, we only collected ads for the first and second

time period. Our data-sample thus consisted of 1,600 stories, 1,600 videos and 1,600

searches across 4 time periods and 800 ads across the first 2 time periods.

These 5,600 headlines selected through a stratified randomly sampling were not neces-

sarily unique. For example, the headlines “Mail carrier arrested for dumping mail” and
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“Including ballots USPS employee arrested, accused of dumping mail” showed up the

most—61 and 59 times respectively—at different locations and/or in different search

batches within our sampled set. We then coded the unique 2,438 headlines out of this

set using the codebook described below.

4 Coding Scheme

In designing the coding scheme, initial data was first analyzed during a two-week ex-

ploratory period. During this time, we spoke with journalists and researchers regarding

the headline construction process, including discussion of best journalistic practices

related to the dissemination and presentation of online content. These included an

emphasis on the centering of facticity through the use of keywords associated with

falsehoods (e.g., “misinformation”, “false accusations”, “misleading”), avoiding the spot-

lighting of problematic groups, focusing headlines on impact rather than eventizing

aberrations or anecdotes, and ensuring that headlines are well-watched with the content

of the related article rather then solely matching on prominent terms. In addition to

providing additional insights such as these to help inform the coding scheme, the prelim-

inary period also allowed us to simplify the primary categories contained in our coding

scheme.

Informed by this preliminary process, we developed the coding scheme around a central

“Stance” category, which was used to categorize headlines based on their potential

impact on search engine users’ trust in the election’s legitimacy. Once this central

variable was in place, we trained three coders to differentiate between various codes on

this dimension, which sought broadly to answer the question:

If voters were to have read this headline on the day it was captured, how (if at all) could

it have affected their perception of the integrity of the 2020 U.S. Election’s processes,

institutions, and results?

Eventually the “Stance” category was narrowed to focus on three central codes: Sows

doubt, Imparts trust, and Provides information. The shortened definitions of these sepa-

rate codes were finalized as follows:

• Sows Doubt: The headline has the potential to lower voter trust in the election’s

integrity.

Example: “Allegheny County ballot contractor accused of sending out late ballots in

other counties”

• Imparts Trust: The headline has the potential to improve voter trust in the elec-

tion’s integrity.

Example: “Barr says he hasn’t seen fraud that could affect the election outcome”

• Provides Information: The headline is not likely to alter voter trust in the election’s

integrity.

Example: “Biden projected to win Georgia, Trump projected to win North Carolina”

In addition to these three central codes, two more codes were added to the “Stance”

category. The Campaign Ad code was used to identify content that might appear in SERP

verticals like search results or videos but were merely a promotional campaign in nature.

The Other code was included to separate headlines which did not pertain to the election

at all.

Based on insight from the initial exploratory period which illustrated that the headlines
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coded as either Imparts Trust or Sows Doubt could be further divided to discern headlines

actively spotlighting or emphasizing issues related to the election’s legitimacy. For

example, while one subset of headlines was coded solely as “Sows doubt” (or “Imparts

trust”), denoting its potential to reduce (or impart) trust in election integrity — e.g., “Poll

worker accused...”, “voters are concerned...” — a second subset appeared constructed

specifically to undermine (or bolster) perceptions of its integrity — e.g., “Voter Fraud

Map: Where to find evidence...”, “6M+ votes shifted by big tech...”. To capture this crucial

difference, the “Promotion” category (which involved a binary code) was developed to

augment the “Stance” categorization. Collectively, the two categories are reported in

tandem to ensure that we identify not only headlines that promote distrust, but also

those that promote trust in the election’s legitimacy.

In cases where we assigned the “Stance” as Imparts Trust, the “Promotion” category

was used to identify headlines that deliberately attempted to build trust in the integrity of

the election among readers. Similarly, where the “Stance” was coded as Sows Doubt, the

“Promotion” category was used to identify headlines that appeared to be deliberately

aimed at undermining perceptions of the election’s integrity. Definitions and examples of

headlines that we determined to promote distrusting content are presented below:

• “Promotion” + “Sows Doubt” = “Promotes Distrust”): the headline is actively

reducing voter trust in the election’s integrity

Example: This accounts for differences in headlines discussing topics that may

undermine trust in the election, such as “Voters fear voter suppression in the build-

up to the election”, and headlines that push these narratives, such as “Guns, lies

and ballots set on fire: This is voter suppression in 2020”.

• “Promotion” + “Imparts Trust”= “Promotes Trust”): the headline is actively

improving voter trust in the election’s integrity

Example: This accounts for differences in headlines discussing topics that may

improve trust in the election, such as “Ohio county officials shoot down Trump claim

of ‘rigged election’ ”, and headlines that push narratives to improve trust, such as

“Election fraud claims are baseless”

Content coded both as Promotion and Sows Doubt) is the closest to matching our concep-

tion of content with the potential to undermine trust in the election. As such, we used this

subset as the basis for the primary analyses included here. Additional categories were

included in the coding scheme, but remain peripheral to the central analyses discussed

in this paper. These are discussed further in Appendix A.

4.1 Coding Process

Once the coding categories had been finalized, a subset of 200 of the 5,600 selected

headlines were used as a practice set to test out the final coding scheme on real data.

Once each coder had completed their coding of the initial set, the lead researcher on

the project went through each disagreement individually with all three coders to identify

issues in the coding scheme to ensure consistency across the coders before moving

on to the full set. Most of the discrepancies resulted from differences in each coder’s

knowledge of the conspiracies that had proliferated online during the election period,

which resulted in more knowledgeable coders correctly identifying headlines coding

these narratives as “Promotes Distrust”. Less knowledgeable coders were subsequently

given a longer list of common conspiratorial narratives to review.

Once the coding scheme was finalized and the coders felt confident in their ability to

discern between the codes in each of the categories, the data was organized in de-
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scending order based on the frequency of headline appearance in the database. This

resulted in the collection of 492 headlines which occurred more than two times each in

the database. All the three coders coded them as a final check to ensure shared under-

standing of the coding scheme. After arbitrating any coding conflicts and determining

enough consistency across coding, the team then proceeded to code the entire primary

headline dataset.

The unique 2,438 headlines were randomized and each coder was given 2/3 of the

headlines to code, resulting in each headline being coded twice by two different coders.

After the first two coders finalized their coding, we found that our coders shared an

almost perfect understanding of the “Stance” and “Promotion” categories as indicated by

a Cohen’s Kappa of 0.78 and 0.9 respectively (Landis andKoch 1977). Any disagreements

between the first two coders were then arbitrated by a neutral third coder7.

5 Results

5.1 R1: SERP vertical type

Our analyses show strong correlations between specific SERP verticals and the frequency

of headlines that promoted distrust in the election’s integrity (“Promotes Distrust”).

Specifically, as seen in Figure 3, videos during the period were more likely to contain

undermining content than other SERP verticals by a wide margin. This relationship

persists both with headlines that serve to sow doubt in the credibility of the election and

also among the more concerning content that promotes, rather than simply discusses or

mentions, similar content.

Figure 3: Percentage of coded headlines that promoted trust and distrust in the integrity

of the election.

We ran a multinomial regression analysis by modeling the SERP vertical type (adver-

tisement, search results, top stories, videos) to compare the extent to which headlines

promoting distrust and promoting trust were identified in headlines related to videos

7. Overall, the final agreement rates ranged from 75% to 99%—corresponding to a Cohen’s Kappa of 0.69

and 0.99—suggesting shared understanding across all the coding categories. We have included the inter-coder

reliability measures across all the categories in Section B.
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and top stories. We found that the odds of a video having a headline containing content

with the potential to undermine trust were almost three times greater than headlines

associated with a story (Table 5). Moreover, top stories were about three times as likely

to promote a trust-imparting headline than videos 5, suggesting that video headlines

contained both disproportionately high amounts of content that promoted distrust as

well as low amounts of content that promoted trust.

SERP vertical type Odds ratio CI [95%] p-value

Sowing doubt and promoting it (Yes, No; reference: No)

(Intercept) 0.049∗ [0.036, 0.069] < .001

Searches 2.213∗ [1.536, 3.186] < .001

Stories 1.874∗ [1.294, 2.713] < .001

Videos 5.472∗ [3.867, 7.741] < .001

Imparting trust and promoting it (Yes, No; reference: No)

(Intercept) 0.009∗ [0.004, 0.019] < .001

Searches 6.991∗ [3.227, 15.144] < .001

Stories 8.755∗ [4.062, 18.869] < .001

Videos 2.905∗ [1.295, 6.514] < .001

Table 5: Odds ratios for Sowing doubt and promoting it and Imparting trust and promoting

it through different informationmodalities of searches, stories and videos (over campaign

ads) calculated using logistic regression.

Figure 3 illustrates how top stories were the most common channel for the promotion

of content that served to enhance readers’ trust in the integrity of the election. When

compared with other modalities such as videos, ads and search results, stories were the

only SERP verticals with more headlines that imparted trust than headlines that sowed

doubt throughout the sample. When viewed longitudinally in Figure 4, we see that this

discrepancy between SERP vertical type and trusted content was more prominent in the

post-election period. We found an increase in the post-election videoswith headlines like

“Dominion whistleblower says she didn’t see a single vote cast for..”8 and “ELECTORAL

FRAUD: Where To Find The Evidence | Rudy Giuliani | Ep. 89”9

Overall, though the focus in the pre-election period was primarily on the role of trust-

undermining advertisements(Zeng et al. 2021), video content appears to have been a

far more challenging issue in the production of content that cast doubt on the election’s

legitimacy. Moreover, given that videos aremore difficult tomonitor due to the challenges

associated with tracking in-video content and graphics (Nakov et al. 2021; Jalli 2021;

Bradshaw et al. 2020), we believe that videos could bemore delegitimizing beyond these

headline differentials. For example, our data included videos with titles such as “LIVE

2020 Presidential Election Results”, which, though coded as Provides Information, was

found to be projecting false election results. Further research is needed to determine

the scope of the use of misleading headlines to mask controversial in-video content and

to capture deliberate efforts to evade censoring through the deployment of innocuous

headlines (Moran, Grasso, and Koltai 2022).

8. The entire title read as “Dominion whistleblower says she didn’t see a single vote cast for Donald Trump

in her 27 hour shift” and directed users to a YouTube video that can still be accessed online as of April 30,

2022.

9. This video was later removed from YouTube for violating its community guidelines.
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Figure 4: The percentage of headlines per day (Y axis) from SERP data that promoted

distrust over the duration of data collection (X axis) from October 5 to December 3,

2020. Content in headlines of SERP-videos promoted increasingly more distrust than

SERP-stories in the post-election period after November 03, 2020.

5.2 R2: Geographic location

In our analysis of geographic trends, our subset of election-related Google headlines

provides evidence of both effective stewardship as well as concerning patterns of distri-

bution of delegitimizing political content. Our coding—to our surprise—did not identify

any differences in the kind of content based on any combination of the “Stance” and

“Promotion” categories that was served to cities based on their sizes (i.e., whether we

classified the city or location as an urban area, urban cluster or rural area as specified in

Table 2). We suspect this to have happened since search engine platformsmay not find it

useful to personalize the results for smaller regions with a population of a few thousand

people, especially when the news involves topics about the national election.

One difference between the swing states and non swing states that stood out was the

amount of campaign ads that emerged in the search engine home page. A multino-

mial regression analysis indicated that the odds of a campaign ad (compared to merely

providing information) occurring in a swing state was almost twice that of a non-swing

state. Figure 5 illustrates how these campaign ads almost always occurred through the

advertising—and hence paid—SERP vertical in swing states as opposed to non-swing

states. We found a similar pattern when investigating the difference across the electoral

vote with red states having more campaign ads than the blue states.

5.3 R3: Search terms

Moreover, while differences in political content were small across cities, focusing on

conspiratorial search terms often led to politically biased and more frequent misleading

search results. As previously noted in Table 2, our search terms consisted of two groups

— one that focused on ordinary election terms and another that focused on conspiratorial

topics. By using these two types of election terms as predictors, our models suggested
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Figure 5: Searches made from swing states (total 6 locations in our collection) during the

2020 Presidential election returned relatively higher percent share of campaign-based

advertisements as compared to searched made from non-swing states (total 14 in our

collection).

that a headline containing content that promoted distrust in the election were about

six times more likely to appear on Google SERPs when a user actively searched for a

conspiratorial topic than when compared to use of more general searches about election

topics (Table 6). Figure 6 shows the number of trust undermining headlines that appear

on the homepage of Google search given the various search terms inspected in this study.

Headlines promoting distrust in the election increased considerably when we conducted

searches based on conspiratorial terms.

Search term type Odds ratio CI [95%] p-value

Sowing doubt and promoting it (Yes, No; reference: No)

(Intercept) 0.252∗ [0.229, 0.276] < .001

General search term 0.167∗ [0.135, 0.206] < .001

Table 6: Odds ratios for Sowing doubt and promoting it when searching for general

election-related terms as compared to conspiratorial election-related terms (described

in Table 1) calculated using logistic regression.

Searching for specific terms during the election period did return content that promoted

distrust in the election, but the rates were much higher for the conspiratorial terms. That

is, individuals who sought out narratives that discussed potential issues with the election

were not always directed away from delegitimizing content. This is not surprising, given

that Google’s business model emphasizes its ability to deliver the content most likely of

interest to end-users. However, it does placemore emphasis on the process bywhich this

content is selected and delivered (e.g., tagging, labels, etc.). For individuals searching for

general election terms and questions, which likely included a far greater share of Google’s
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users10, our data suggests these users were subjected to fewer headlines containing

content with the potential to undermine their trust in the election. Given this distinction,

we see this as some evidence of successful limitation of pathways to delegitimizing

content.

Figure 6: Frequency of doubt-sowing headlines given various search terms. Conspirato-

rial search terms that actively look for election-related issues served more delegitimizing

content than the general search terms.

5.4 R4: Media domains

In addition to differences across SERP vertical type and location, our coding also revealed

differences in the presentation of content across distinct news domains — with a specific

focus on partisan outlets. We employed the media bias and media reliability scores from

Ad Fontes Media (6.0) (Ad Fontes Media 2020)—a choice based on recent research that

also needed interpreting media bias of online news sources (Huszár et al. 2022; Brooks

andPorter 2020; Baranauskas 2022; Zhao et al. 2020)—as predictors for investigating the

effect of media partisanship onto the kind of content that was served by these domains.

As per these measures, a bias-score of +21.29 for OANN and -18.12 for Democracy Now!

indicated the partisan-right and partisan-left, respectively, in our data.

Consistent with expectations, our models indicated that with every unit increase in the

bias of a media domain (implying higher right-leaning bias), the likelihood of a headline’s

content that challenge the integrity of election by sowing doubt (relative tomere providing

information) increased significantly by roughly 5.3% (Table 7). This trend continued

when we accounted for how some media sources promoted the headlines that were

served to delegitimize the election’s integrity; every unit increase in the bias scores of

a media source (i.e., increasing right-leaning bias) could result in 2.6% higher chance

10. According to Google trends, only one query “Newsmax election results”—that we believe might have

displayed some delegitimizing content—appeared in the top 25 rising search queries on Google’s search

engine in the same time period as our collection; most other queries involved phrases like “election results”,

“Presidential election”, “where do I vote”, “who is winning” which resonate with the general search terms that

we used.
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of it promoting content with the potential to undermine trust in the election and about

4% lower chance promoting content that reinstated public trust in the election (Table 8).

Our models indicated no such effect for media reliability scores. Although AdFontes

Media v6.0 data only accounts for 44% of the unique headlines from our sampled data,

results indicate the severity of damage that partisan media could cause — by promoting

debunked content in mainstream information channels like search engines — towards

public faith in democratic processes.

Type of stance Odds ratio CI [95%] p-value

Campaign Ad (Intercept) 0.005∗ [0.006, 0.006] < .001

Campaign Ad 0.877 [0.674, 1.142] .331

Imparts trust (Intercept) 0.454 [0.139, 1.485] .191

Imparts trust 1.002 [0.983, 1.022] .829

Sows doubt (Intercept) 2.476 [0.931, 6.585] .069

Sows doubt 1.053∗ [1.036, 1.071] < .001

Other (Intercept) 0.031∗ [0.001, 0.341] 0.004

Other 1.016 [0.977, 1.057] 0.421

Table 7: Odds ratios for the different Stance type (relative to Providing information)

reported for every unit increase in the media bias score taken from AdFontes Media

(5.0) (Ad Fontes Media 2020) calculated using logistic regression.

Odds ratio CI [95%] p-value

Sowing distrust and promoting it (Yes, No; reference: No)

(Intercept) 0.259∗ [0.079, 0.844] .025

Bias score 1.026∗ [1.005, 1.048] .014

Imparting trust and promoting it (Yes, No; reference: No)

(Intercept) 0.133∗ [0.026, 0.674] < .015

Bias score 0.961∗ [0.935, 0.989] < .005

Table 8: Odds ratios for Sowing doubt and promoting it and Imparting trust and promoting

it with every unit increase in the media bias score taken from AdFontes Media (5.0) (Ad

Fontes Media 2020) calculated using logistic regression.

Moreover, many of the domains associated with the presentation of content that pro-

moted narratives with the potential to undermine electoral integrity with the highest

frequency were affiliated with hyper-partisan outlets when examined both by the total

and frequency of concerning posts. Looking first at total headlines coded as promoting

sows doubt narratives 11, we find that while this included less reputable sites such as

the Chinese language site NTD (see Figure 7), the list also included activist organizations

such as Rigged, which, though perhaps well-intentioned, promoted ads with headlines

that served to undermine trust in the election 12. More alarmingly, several prominent

legacy news sites, including CNN and Fox News, also rank toward the top of total articles

with these dual designations.

11. For both total and frequency calculations only domains with more than three headlines appearing in the

coding dataset were included in the plots.

12. Users of the Google search engine were shown advertisements titled “The Voter Suppression Playbook

- Watch ‘Rigged’ for Free” upon searching for the keywords “rigged election” or “stolen election”, and upon

clicking directed to the following url: https://www.riggedthefilm.com/
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Figure 7: Included are the media domains (X axis) that promoted the most number of

headlines (Y axis) with delegitimizing content.

However, when looking at percentages (Figure 8) rather than totals for sites like CNN and

Fox News, their comparable rankings stand out less. While this is encouraging, taken

together these outputs serve as a reminder that due to the much greater quantity of

information put out by many legacy news organizations, even a small share of concern-

ing articles can play an outsized influence in delivering content with the potential to

undermine trust in the election to the public.

Based on a review of the headlines associated with the organizations that had the highest

percentage of promoting doubt designations, emphasis on electoral fraud appeared to

be the most common strategy to address the election’s integrity and/or validity. In all,

our preliminary foray into domain analysis should serve to initiate further examination of

the sources of content with the potential to undermine trust in the election across both

legacy and partisan media outlets. As with our media bias analyses, the narrow scope

of our work here should serve only to draw broad conclusions regarding the types of

headlines deployed across distinct forms of media groups rather than to identify specific

domains for critique.

6 Discussion

6.1 Reflecting on Google search engine as a gateway to 2020 US election

Through this research, we found that Google SERPs do serve some concerning content,

but primarily when users searched for conspiratorial terms or through the videos SERP-

vertical. However, for searches based on general election terms, Google did a relatively

good job of surfacing relevant content without leading users towards misleading argu-

ments that negatively impacted civic trust in the election processes. Given the diversity of

public opinion—sometimes at odds—across different regions in the United States, it can

be challenging to deliver information that caters to the public interest yet steer clear of
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Figure 8: Percent share of unique headlines (Y axis) per media domain (X axis) that

promoted delegitimizing content.

any regional biases. We were pleased to find no evidence that the search engine created

information bubbles catering to any regional bias. The proportion of trust-undermining

to trust-imparting content served in swing states was also similar to the proportion in

non-swing states. We believe that Google offers at least some customization of SERP

general results based on one’s location to ensure such relative indifference to users’

location when using the search engine.

One tricky area that remains rife with opportunity for discussion is what to serve users

when they actively search for it. Our analysis demonstrates that Google offers more

access to controversial content when users actively search for it. For example, headlines

like “The biggest election fraud story you haven’t heard about...” only showed up when

users searched for the keyword “election fraud”. This can be concerning given that SERP

headlines are known to offer its users more partisan cues as compared to the original

webpage (Hu et al. 2019). However, controversial content did not surface when users

searched for more general keywords like “election results” or “Presidential election”.

More encouragingly, we found that during the 2020US Election, individuals who searched

for general election terms, issues, and questions — which we believe to be the dominant

set of users — were largely shielded from headlines that could undermine electoral

trust.

Several researchers have looked into advertisement as a medium of information that

serves misleading content – political ads in particular (Zeng et al. 2021; Kreiss and

McGregor 2019). While we found that campaign-based ads occurred more in our data,

theseweremostly placedby activism-basedorganizations, such asACLU 13 andWinred 14.

These ads did not seem harmful to perceptions of election integrity. Some other ads

that our coding suggested to have misleading content in their headlines occurred evenly

13. The American Civil Liberties Union (aclu.org) is a nonprofit organization to safeguard human rights and

liberties.

14. Winred.com: Winred is the official online fundraising platform supporting the GOP.
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across geographic locations15.

Though ads were comparatively less of a concern in our audit, the video headlines served

to be a notable pathway to content with the potential to undermine trust 16. Given

that videos are more difficult for fact-checkers to check for misleading perspectives,

it might bypass their scrutiny, compared to the text modality. We did not have access

to the usage of the videos, but it could be that videos are also more viewed. Prior

research already points out that people tend to believe more in the information they

see in a video than what they read through text (Wittenberg et al. 2021). In addition,

plenty of studies have shown that clickbait is successful for a reason – people click on it

(Scacco and Muddiman 2016; Bhowmik et al. 2019) At present, researchers believe that

Google’s tools for stopping video-based misinformation seen on the Youtube platform

are only partially effective (Hussein, Juneja, and Mitra 2020; Donzelli et al. 2018). With

the possibility of Google including more videos from a broader range of platforms like

TikTok and Instagram on its homepage, more work will be needed to monitor this kind of

content. This is of particular concern given the ability of creators to exploit the difficulties

of monitoring videos to disguise content by evoking innocuous headlines, as occurred

during the 2020 U.S. Election (Tenbarge 2020). Our current audit is unable to track these

additional issues.

In terms of actionable responses, thoughwe acknowledge the challenges associatedwith

video content management, we find that simple headlines can narrow auditors’ focus

onto concerning content without necessitating the designation of resources necessary to

sample all election-related videos randomly. While this does not solve the issue of videos

using deliberately vague or misleading headlines to hide controversial content, it could

be used to limit the mainstream influence of similar videos by ensuring that they remain

in the periphery without showing in the results of users searching for general election

concepts, terms, and questions. However, nothing in our audit suggests that censorship

should be promoted as a central strategy of search engines in managing political and

politically-adjacent content.

6.2 Designing future election-based audits

The included analyses were enabled by the strategic collection of data around the 2020

US Election. Future analyses can build on these results in several ways.

First, with additional resources, we can refine the coding scheme and build it out to ad-

dress a broader range of issues, topics, and concepts. Although we developed a rigorous

coding scheme to make sense of the news headlines, we utilized only those codes in

this research that focus on headline content with the potential to undermine trust as

a compromise that allows for a longitudinal peek under the curtain while keeping the

work manageable. With collaborative efforts of the search engines themselves, it may be

possible to capture and categorize similar headlines in real-time and match headlines

with the associated content of each SERP vertical type. For instance, by pairing poten-

tially undermining headlines with the nature of the underlying video content, it might be

possible to generate a more nuanced understanding of the pathways connecting users to

political content and generate knowledge of how these components intersect. Further in-

vestment in post hoc coding may also enable differentiation between types of potentially

15. We identified a couple of advertisements in September, 2020 — prior to the period of data collection that

we analyzed within the scope of this paper — that we believed contained delegitimizing content. These ads

were taken down soon after we reported them to Google. We suspect that including these ads in the collection

might have impacted the reported findings.

16. Given the possibility that Google tends to overwrite about 33.4% (Pecanek 2021), it poses a question

if Google’s rewriting could play had any role in altering the trust-undermining or trust-imparting potential of

SERP headlines.
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undermining content, such as misleading content and outright false content.

Second, future audits can inform the priorities of search engine staff during election

periods. While Washington DC and Silicon Valley have given much emphasis to the

content linked to political advertisements, our audit suggests that when compared to

other modalities, advertisements may not be the primary pathway from which users

encounter content with the potential to undermine electoral trust. Further research

into the different sources of content promotion should allow search engines to allocate

resources more efficiently across their networks.

Third, we recommend that auditing reports should be thorough, comprehensible and

easily accessible to different stakeholders so they can contribute in meaningful ways

towards safeguarding the trust in election processes. For instance, although Google

publishes a list of the political ads hosted on the search engine as the “Google trans-

parency report on political advertising”, the vague criteria of what constitutes a political

ad and the limited information it requests about an ad publisher make it easy to cir-

cumvent the report’s scope. For example, our extended data collection contained ads

from “protectthevote.org” (paid by the Republican National Committee) that appeared in

the transparency report, but ads from “protectmyvote.org” did not seem to fit Google’s

criteria of political advertising17. In addition, platforms should make search engine data

available to researchers so they can serve as independent third-party auditors and help

monitor the health of these information environments. This research was possible since

we paid a third party for the API-access which is a financial hurdle and a caveat that

might impact the quality of the data. We acknowledge that when collecting data through

different sources, it is important to protect people’s privacy and believe that the data

that we accessed poses less threat to user privacy than by collecting SERP data through

browser-plugins (e.g., (Robertson et al. 2018)). Webelieve that law should require search

engine platforms to provide researchers with access to anonymized data as nothing in

Section 230 or the First Amendment stands in the way of such transparency.

Previous audits on search engines like Google search have discovered several insights

into how these platforms can shape public opinion, especially around critical topics like

elections (Hu et al. 2019; Mustafaraj, Lurie, and Devine 2020; Trielli and Diakopoulos

2019, 2022; Diakopoulos et al. 2018; Robertson et al. 2018). Our research adds to this

body of literature on how Google fared in delivering election-related news to its users

across America in 2020. In addition, we curate a dataset consisting of google search

engine results — 47k advertisements, 500k main search results, 240k news stories, and

66k videos — and make it publicly available18 to facilitate the discovery of more insights

about the 2020 US elections as pictured through the agency of search engines.

17. As reported in the article (https://www.washingtonpost.com/technology/2020/08/28/google-ads-mail-

voting/), Google took five days before they removed the “protectmyvote.org” ads from their platform after its

discovery.

18. URL to be added later.
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Appendices

Appendix A: Additional Coding Categories

During the coding process, it was decided that the brief structure of most headlines led to

considerable uncertainty regarding the potential impact of certain posts. To capture this

uncertainty, in addition to the primary coding categories of “Stance” and “Promotion”, an

“Ambiguous” category was introduced to denote instances where it was unclear from the

headline how readers would react, with two plausible interpretations possible that would

lead to different assessments of trust. For example, a headline which sarcastically insists

that there was copious amounts of election fraud could be read in a straightforward

manner, resulting in reduced trust, or in a sarcastic tone. The “Ambiguous” category was

optional and only needed to be used when applicable.

Another additional category “Topic” was added during the planning phase to capture in

broad strokes the issue being discussed by the headline. The list of codes in this category

included Mail-in Voting, In-Person Voting, Voting Machines, Public Perceptions, Misin-

formation, Voter Suppression/Intimidation, Ballot Harvesting, Election Info/Procedures,

Election Processes/Results. The final two topics were catch-all inclusions which were

used only when one of the first seven specific topics were not applicable. To differentiate

between the two, the first code Election Info/Procedures was used when the headline

in question detailed information pertaining to the election or surrounding events. The

second code Election Processes/Results was used to identify headlines which related

directly to the outcome of the election or issues that could impact the outcome of the

election which did not fall into the more specific topical themes.

The next two categories, “Attribution” and “Claimant”, were coded in tandem. “Attri-

bution” is a binary code denoting whether or not the headline in question attributed

the contained information to a particular individual, entity, or source. If this was coded

Yes, denoting an attribution within the headline, then the “Claimant” category was used

to identify or approximate the best categorization of individual, entity, or source. This

included everything from specific partisan supporters to public officials, media members,

and election workers, as well as either Biden or Trump.

The “Subject” categorywas added late on in the process to provide additional information

not captured by codes in either the “Topic” or “Claimant” category. This was developed

by the coders as a representation of the heroes or villains of the headline in question.

While the “Topic” category focused on the theme, the “Subject” focused on the individual

or the group involved in that action. For instance, if a headline read: “Media Group X:

Notable Democratic politician accused of ballot harvesting in Minnesota”, the topic would

be ballot harvesting, where as the subject would be the Democratic politician in question

(here “Media Group X” would be considered the claimant).

Four additional categories were included to provide context for specific headlines. These

included “Specific Event”, “Legal Claim”, “Leading Question”, and “Fact Check”. Each of

these is a binary code indicating whether or not a specific headline involves any of these

specific issues.

Appendix B: Inter-coder reliability

Table 9 describes the inter-coder reliability amongst the three coders and the final

agreement rates amongst them for each category. Given that the first five primary
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Coding category Cohen’s Kappa (IRR) Percent agreement

Stance 0.78 82%

Promotion 0.90 92%

Topic 0.69 75%

Subject 0.74 79%

Attribution 0.95 96%

Fact Check 0.99 99%

Leading Question 0.99 99%

Specific Event 0.86 89%

Table 9: Category-wise agreement amongst the three coders.

categories included more than three possible codes, these reported results provide

strong evidence that are final codes reflect strongly related responses of our coders. As

per the standard for interpreting kappa-scores Landis and Koch 1977, our coders shared

a substantial or almost perfect understanding of the codes and its employment on the

data.
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