
CSSS 512: Lab 2
Temporal Concepts: Trends, Stochastic Processes, and

Seasonality

2018-4-13

Agenda

1. Questions

2. Box-Jenkins method

3. Deterministic Trends

4. Seasonality

5. Autoregressive Processes

6. Stationary and Non Stationary Processes

7. Moving Average Processes

Box-Jenkins Method
Steps:

1. Study generic forms and properties

2. Study these realizations for an indication of which possibly
applies to your data

3. Assess your guess–diagnose and iterate

4. Perform a meta-analysis at the end to determine which
specification is best

The Box-Jenkins method assumes that time series are composed by
multiple temporal processes. It then performs diagnostics to
compare the observed series with generic forms to decide what
processes occur in the data (i.e. the DGP)

We will cover the first three steps in this lab.

Deterministic Trends

yt = β0 + tβ1 + et

et ∼ N (0, σ2)

I Each period entails another β1 increase in E(yt)
I Time has a purely systematic relationship with y
I Once the time series is detrended, it is simply white noise

yt − tβ̂1 = β̂0 + êt

êt ∼ N (0, σ̂2)

I White noise is normally distributed with mean zero and
constant variance

Deterministic Trends
Simulate a deterministic trend with noise, de-trend the data, and plot the
time series.

Set the slope of the trend
b1 <- 3/2

#Set the intercept
b0 <- 2

#Set the number of periods
n <- 50
t <- seq(0,n)
y <- rep(0,n)

#Simulate the data
for (i in 1:length(t)){

y[i] <- b1*t[i] + b0 + rnorm(1,0,15)
#The rnorm gives us the noise with mean 0, variance 15

}

Deterministic Trends
#Plot the data
par(mfrow=c(2,1))
plot(y,type="l", col="red",ylab="y",xlab="Time",

main=expression(paste
("Simulated Deterministic Trend, y=2+3/2t + Noise")))

abline(a=2,b=3/2,lty="dashed")

0 10 20 30 40 50

0
20

60

Simulated Deterministic Trend, y=2+3/2t + Noise

Time

y

Deterministic Trends

#Now de-trend the time series
y.minus.tbeta <- rep(0,n)
for (i in 1:length(t)){

y.minus.tbeta[i] <- y[i] - b1*t[i]
}

Deterministic Trends
#Plot and take a minute to inspect the residuals
plot(y.minus.tbeta,type="l", col="red",ylab="y",xlab="Time",

main=expression(paste("Detrended Time Series"))); abline(a=2,b=0,lty="dashed")

0 10 20 30 40 50

−
30

−
20

−
10

0
10

20
30

Detrended Time Series

Time

y

Deterministic Trends

#Find the least squares estimate of the slope
slope1 <- lm(y~t)
slope1

##
Call:
lm(formula = y ~ t)
##
Coefficients:
(Intercept) t
1.996 1.499

#How does it compare to the true beta?
#Plot the data with the true beta and the estimated beta

Deterministic Trends
plot(y,type="l", col="red",ylab="y",xlab="Time",main=expression(paste("Simulated Deterministic Trend
y=2+3/2t + Noise"))); abline(a=2,b=3/2,lty="dashed")
abline(a=slope1$coefficients[1],b=slope1$coefficients[2],lty="dashed",col="green")

0 10 20 30 40 50

0
20

40
60

80

Simulated Deterministic Trend
y=2+3/2t + Noise

Time

y

Deterministic Trends and Serial Correlation
Simulate new data with a deterministic trend and serial correlation

#Set the slope
b1 <- 3/2

#Set the intercept
b0 <- 2

#Set phi
phi <- 0.33

#Set the number of periods
n <- 50
t <- seq(0,n)
y <- rep(0,n)

for (i in 2:length(t)){
y[i] <- y[i-1]*phi + b1*t[i] + b0 + rnorm(1,0,15)

}

Deterministic Trends and Serial Correlation
#Plot the data and also the de-trended time series
par(mfrow=c(2,1))
plot(y,type="l", col="red",ylab="y",xlab="Time",

main=expression(paste
("Simulated Deterministic Trend + Noise + Serial Correlation")))
abline(a=2,b=3/2,lty="dashed")

y.minus.tbeta2 <- rep(0,n)
for (i in 1:length(t)){

y.minus.tbeta2[i] <- y[i] - b1*t[i]
}

0 10 20 30 40 50

0
50

10
0

Simulated Deterministic Trend + Noise + Serial Correlation

Time

y

Deterministic Trends and Serial Correlation
#Plot the data and take a minute to inspect the residuals again
plot(y.minus.tbeta2,type="l", col="red",ylab="y",xlab="Time",main=expression(

paste("Detrended Time Series + Noise + Serial Correlation")));abline(a=2,b=0,lty="dashed")

0 10 20 30 40 50

0
20

40
60

Detrended Time Series + Noise + Serial Correlation

Time

y

Deterministic Trends and Serial Correlation

1. Compare the two sets of plots and discuss the differences
between a deterministic trend and stochastic process.

2. What are some issues that can arise when analyzing de-trended
time series data using regression?

Deterministic Trends and Serial Correlation
par(mfrow=c(2,1))
plot(y.minus.tbeta,type="l", col="red",ylab="y",xlab="Time");abline(a=2,b=0,lty="dashed")
plot(y.minus.tbeta2,type="l", col="red",ylab="y",xlab="Time");abline(a=2,b=0,lty="dashed")

0 10 20 30 40 50

−
30

−
10

10
30

Time

y

0 10 20 30 40 50

0
20

40
60

Time

y

Seasonality

I any cyclical fluctuation in a time series that recurs or repeats
itself at the same phase of the cycle

I yt is an additive or multiplicative function of yt−c for some
fixed cycle c (e.g. c = 12 for months)

I additive seasonality: corresponding months in different years
share a level component

I multiplicative seasonality: corresponding months in different
years related by a factor change

Seasonality
Accidental Deaths in the United States from 1973-1978, (from P. J. Brockwell and R.
A. Davis (1991))

accidents <- read.csv("USAccDeaths.csv",header=TRUE)
attach(accidents)
par(mfrow=c(2,1))
plot(time, USAccDeaths, type="l",
col="red",ylab="y",xlab="Year", main = expression(
paste("Accidental Deaths in the United States from 1973-1978")))

1973 1974 1975 1976 1977 1978 1979

70
00

90
00

11
00

0

Accidental Deaths in the United States from 1973−1978

Year

y

Seasonality

#Simulate a time series with seasonal variation
#Assume the data is de-trended
b1 <- 0
#Set the intercept
b0 <- 2
#Set the number of periods
n <- 60 #Assume a one month period for 5 years
t <- seq(0,n)
y <- rep(0,n)
#Simulate the data
for (i in 1:n){

y[i] <- b1*t[i] + b0 + rnorm(1,0,1)
}
#Introduce additive seasonality during the first three months of each year
a <- seq(1,60, by=12)
b <- seq(2,60, by=12)
c <- seq(3,60, by=12)
q <- sort(c(a,b,c))
for (i in q){

y[i] <- y[i]+6 #Seasonality can be additive or multiplicative
}

Seasonality
#Plot the data
plot(y,type="l",col="red",ylab="y",xlab="Time",
main = expression(paste("Simulated Time Series with Three Month Additive Seasonality")))

0 10 20 30 40 50 60

0
2

4
6

8

Simulated Time Series with Three Month Additive Seasonality

Time

y

Seasonality

#R has a special class of objects that corresponds to time series data
#The ts function allows for you to create a time series object, use help(ts) for reference
ts.1 <- ts(y, start=c(2000,1), end=c(2005,12), frequency=12)
#We are creating a time series of length 60 months that starts from Jan 2000 until Dec 2005
help(ts)
ts.1

Jan Feb Mar Apr May Jun
2000 6.3761137 6.8423562 9.4620279 4.0463741 0.7879327 2.9807032
2001 8.1477820 5.7029378 8.8433553 4.1747984 4.1842872 2.2290593
2002 8.6333985 8.7931906 7.9392746 2.7103501 2.3831615 2.3446237
2003 7.5552225 7.9270708 5.2861032 0.1875826 2.6629234 2.6416772
2004 9.0059949 9.5456131 7.7974050 1.5283635 1.8627545 2.4483092
2005 6.3761137 6.8423562 9.4620279 4.0463741 0.7879327 2.9807032
Jul Aug Sep Oct Nov Dec
2000 0.9715414 2.1407616 2.2300959 2.0397135 2.6181026 2.8537946
2001 2.5976124 2.4518413 2.6453466 3.2668540 1.6625305 3.3515326
2002 1.6106276 2.9195508 1.6165241 3.2468827 1.5694207 2.4388786
2003 1.1467976 2.7441896 -0.7646506 3.5833033 2.9264727 2.6717457
2004 1.8012018 2.3875689 0.3869596 2.3638356 3.6685765 0.8190498
2005 0.9715414 2.1407616 2.2300959 2.0397135 2.6181026 2.8537946

Seasonality
plot(ts.1,type="l",col="red",ylab="y",xlab="Time",
main = expression(paste("Simulated Times Series with Three Month Additive Seasonality")))

Simulated Times Series with Three Month Additive Seasonality

Time

y

2000 2001 2002 2003 2004 2005 2006

0
2

4
6

8

Seasonality
#Now remove the seasonal variation with the decompose function, use help(decompose for reference)
rm.seas.1 <- decompose(ts.1,type="additive")
plot(rm.seas.1)

0
2

4
6

8

ob
se

rv
ed

3.
2

3.
6

4.
0

4.
4

tr
en

d

−
2

0
1

2
3

4

se
as

on
al

−
2

−
1

0
1

2000 2001 2002 2003 2004 2005 2006

ra
nd

om

Time

Decomposition of additive time series

Seasonality

#Alternatively, find the mean for each month,
#then subtract the corresponding monthly mean from each observation
month.avg <- rep(NA, 12)
m <- seq(0,48,by=12)

for (i in 1:12){
month.avg[i] <- mean(y[m+i]) #Find the monthly average

}

month.avg <- rep(month.avg,5)
rm.seas.2 <- y-month.avg
rm.seas.1 <- ts.1-as.vector(rm.seas.1$seasonal)
cor(rm.seas.2, rm.seas.1[1:60])

[1] 1

Seasonality
plot(rm.seas.2,type="l",col="red",ylab="y",xlab="Time",
main = expression(paste("Simulated Times Series with Three Month Additive Seasonality Removed")))

0 10 20 30 40 50 60

−
2

−
1

0
1

Simulated Times Series with Three Month Additive Seasonality Removed

Time

y

Autoregressive Processes

yt = yt−1φ1 + εt

I Past realizations, yt−k , influence current levels of y
I In the AR(1) case, each new realization of yt incorporates the

last period’s realization, yt−1

yt =
∞∑

j=0
εt−jφ

j

I If yt is AR(1), then yt includes the effects of every random
shock back to the beginning of time

I It can also be thought of as the sum of exponentially weighted
random shocks

I When |φ1| < 1, then with each passing observation, an
increasing amount of the shock “leaks” out, but never
completely disappears

Autoregressive Processes
Simulate an AR(1) process with phi of 0.5. Plot the data and examine the ACF and
PACF

#Sample from an AR(1), phi_1 = 0.5, using arima.sim()
y <- arima.sim(list(order = c(1,0,0), ar = 0.50, ma = NULL), n=1000)
#Plot the series against time
par(mfrow=c(2,1))
plot(y,type="l",col="red",ylab="y",xlab="Time",
main = expression(paste("Simulated AR(1) process with ",
phi[1]," = 0.50"))); abline(a=0,b=0,lty="dashed")

Simulated AR(1) process with φ1 = 0.50

Time

y

0 200 400 600 800 1000

−
3

−
1

1
3

Autoregressive Processes
#Plot the ACF and PACF
par(mfrow=c(2,1)); acf(y, main = expression(paste("ACF of AR(1) process with ",phi[1]," = 0.50")))
pacf(y, main = expression(paste("PACF of AR(1) process with ",phi[1]," = 0.50")))

0 5 10 15 20 25 30

0.
0

0.
4

0.
8

Lag

A
C

F

ACF of AR(1) process with φ1 = 0.50

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

Lag

P
ar

tia
l A

C
F

PACF of AR(1) process with φ1 = 0.50

Autoregressive Processes

Make some general observations about the AR(1) plot.

What do we learn from the ACF and PACF?

Autoregressive Processes

#Simulate several AR(1) processes with -1 < phi < 1.
#Plot the data and examine the ACF and PACF

#Sample from AR(1) with phi of 0.8
ar1.1 <- arima.sim(list(order = c(1,0,0), ar=0.8, ma=NULL),n=1000)

#Sample from AR(1) with phi of 0.15
ar1.2 <- arima.sim(list(order = c(1,0,0), ar=0.15, ma=NULL),n=1000)

#Sample from AR(1) with phi of 0.99
ar1.3 <- arima.sim(list(order = c(1,0,0), ar=0.99, ma=NULL),n=1000)

Autoregressive Processes
plot(ar1.1,type="l",col="red",ylab="y",xlab="Time", main = expression(

paste("Simulated AR(1) process with ",phi[1]," = 0.8"))); abline(a=0,b=0,lty="dashed")

Simulated AR(1) process with φ1 = 0.8

Time

y

0 200 400 600 800 1000

−
6

−
4

−
2

0
2

4

Autoregressive Processes
par(mfrow=c(2,1))
acf(ar1.1, main = expression(paste("ACF of AR(1) process with ",phi[1]," = 0.8")))
pacf(ar1.1, main = expression(paste("ACF of AR(1) process with ",phi[1]," = 0.8")))

0 5 10 15 20 25 30

0.
0

0.
4

0.
8

Lag

A
C

F

ACF of AR(1) process with φ1 = 0.8

0 5 10 15 20 25 30

0.
0

0.
4

0.
8

Lag

P
ar

tia
l A

C
F

ACF of AR(1) process with φ1 = 0.8

Autoregressive Processes
plot(ar1.2,type="l",col="red",ylab="y",xlab="Time", main = expression(

paste("Simulated AR(1) process with ",phi[1]," = 0.15"))); abline(a=0,b=0,lty="dashed")

Simulated AR(1) process with φ1 = 0.15

Time

y

0 200 400 600 800 1000

−
3

−
2

−
1

0
1

2
3

Autoregressive Processes
par(mfrow=c(2,1))
acf(ar1.2, main = expression(paste("ACF of AR(1) process with ",phi[1]," = 0.15")))
pacf(ar1.2, main = expression(paste("ACF of AR(1) process with ",phi[1]," = 0.15")))

0 5 10 15 20 25 30

0.
0

0.
4

0.
8

Lag

A
C

F

ACF of AR(1) process with φ1 = 0.15

0 5 10 15 20 25 30

−
0.

05
0.

05

Lag

P
ar

tia
l A

C
F

ACF of AR(1) process with φ1 = 0.15

Autoregressive Processes
plot(ar1.3,type="l",col="red",ylab="y",xlab="Time", main = expression(

paste("Simulated AR(1) process with ",phi[1]," = 0.99"))); abline(a=0,b=0,lty="dashed")

Simulated AR(1) process with φ1 = 0.99

Time

y

0 200 400 600 800 1000

−
10

−
5

0
5

10
15

Autoregressive Processes
par(mfrow=c(2,1))
acf(ar1.3, main = expression(paste("ACF of AR(1) process with ",phi[1]," = 0.99")))
pacf(ar1.3, main = expression(paste("ACF of AR(1) process with ",phi[1]," = 0.99")))

0 5 10 15 20 25 30

0.
0

0.
4

0.
8

Lag

A
C

F

ACF of AR(1) process with φ1 = 0.99

0 5 10 15 20 25 30

0.
0

0.
4

0.
8

Lag

P
ar

tia
l A

C
F

ACF of AR(1) process with φ1 = 0.99

Unit Root Tests

yt =
∞∑

j=0
εt−jφ

j

I If yt is AR(1), then yt includes the effects of every random
shock back to the beginning of time

I When |φ1| = 1, then we have a random walk or unit root, and
the impact of the random shocks accumulate over time rather
than dissipate

I The mean of the time series is time dependent (non-stationary)

Unit Root Tests
#Check for a unit root on one of the AR(1) processes

#Perform a Phillips-Perron test or Augmented Dickey-Fuller test
library(tseries)
PP.test(ar1.1)

##
Phillips-Perron Unit Root Test
##
data: ar1.1
Dickey-Fuller = -10.706, Truncation lag parameter = 7, p-value =
0.01

adf.test(ar1.1)

Warning in adf.test(ar1.1): p-value smaller than printed p-value

##
Augmented Dickey-Fuller Test
##
data: ar1.1
Dickey-Fuller = -7.8468, Lag order = 9, p-value = 0.01
alternative hypothesis: stationary

Autoregressive Processes

Simulate an AR(1) process with phi = 1.
Plot the data and examine the ACF and PACF

#Set number of observations
n <- 1000

#Set phi
phi <- 1

#Set y
ar1.4 <- rep(0,n)

#Simulate AR(1) process with unit root
for (i in 2:n){

ar1.4[i] <- ar1.4[i-1] + rnorm(1)
}

Autoregressive Processes
#Plot the time series
plot(ar1.4,type="l",col="red",ylab="y",xlab="Time", main = expression(
paste("Simulated AR(1) process with ",phi[1]," = 1.0"))); abline(a=0,b=0,lty="dashed")

0 200 400 600 800 1000

0
20

40
60

Simulated AR(1) process with φ1 = 1.0

Time

y

Autoregressive Processes
#Plot the ACF and PACF
par(mfrow=c(2,1)); acf(ar1.4, main = expression(paste("ACF of AR(1) process with ",phi[1]," = 1.0")))
pacf(ar1.4, main = expression(paste("PACF of AR(1) process with ",phi[1]," = 1.0")))

0 5 10 15 20 25 30

0.
0

0.
4

0.
8

Lag

A
C

F

ACF of AR(1) process with φ1 = 1.0

0 5 10 15 20 25 30

0.
0

0.
4

0.
8

Lag

P
ar

tia
l A

C
F

PACF of AR(1) process with φ1 = 1.0

Autoregressive Processes

Make some general observations about the AR(1) plot.

What do we learn from the ACF and PACF?

Unit Root Tests

#Perform a unit root test on the data

#Perform a Phillips-Perron test or Augmented Dickey-Fuller test
PP.test(ar1.4)

##
Phillips-Perron Unit Root Test
##
data: ar1.4
Dickey-Fuller = -2.1789, Truncation lag parameter = 7, p-value =
0.5026

adf.test(ar1.4)

##
Augmented Dickey-Fuller Test
##
data: ar1.4
Dickey-Fuller = -2.0754, Lag order = 9, p-value = 0.5464
alternative hypothesis: stationary

Autoregressive Processes
#Simulate an AR(2) process with phi_1 = 0.5 and phi_2 = 0.2.

#Plot the data and inspect the ACF and PACF
ar2.1 <- arima.sim(list(order = c(2,0,0), ar = c(0.50,0.2), ma = NULL), n=1000)

#Plot the series against time
par(mfrow=c(2,1))

plot(ar2.1,type="l",col="red",ylab="y",xlab="Time", main = expression(paste
("Simulated AR(2) process with ",phi[1]," = 0.5, ", phi[2]," =0.2")));abline(a=0,b=0,lty="dashed")

Simulated AR(2) process with φ1 = 0.5, φ2 =0.2

Time

y

0 200 400 600 800 1000

−
4

0
2

4

Autoregressive Processes
par(mfrow=c(2,1)) #Plot the ACF and PACF
acf(ar2.1, main = expression(paste("ACF of AR(2) process with ",phi[1]," = 0.50, ", phi[2]," =0.2")))
pacf(ar2.1, main = expression(paste("PACF of AR(2) process with ",phi[1]," = 0.50, ", phi[2]," =0.2")))

0 5 10 15 20 25 30

0.
0

0.
4

0.
8

Lag

A
C

F

ACF of AR(2) process with φ1 = 0.50, φ2 =0.2

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

Lag

P
ar

tia
l A

C
F

PACF of AR(2) process with φ1 = 0.50, φ2 =0.2

Unit Root Tests
#Is the time series stationary?

#Confirm results with a unit root test
PP.test(ar2.1)

##
Phillips-Perron Unit Root Test
##
data: ar2.1
Dickey-Fuller = -15.945, Truncation lag parameter = 7, p-value =
0.01

adf.test(ar2.1)

Warning in adf.test(ar2.1): p-value smaller than printed p-value

##
Augmented Dickey-Fuller Test
##
data: ar2.1
Dickey-Fuller = -7.6086, Lag order = 9, p-value = 0.01
alternative hypothesis: stationary

Autoregressive Processes

#Sample from an AR(2), phi_1 = 1.2, phi_2 = -0.2 and plot the ACF and PACF

#Set number of observations
n <- 1000

#Set phi
phi_1 <- 1.2
phi_2 <- -0.2

#Set y vector
ar2.2 <- rep(0,n)

#Simulate AR(2) process with unit root
for (i in 3:n){

ar2.2[i] <- ar2.2[i-1]*phi_1 + ar2.2[i-2]*phi_2 + rnorm(1)
}

Autoregressive Processes
#Plot the time series
plot(ar2.2,type="l",col="red",ylab="y",xlab="Time", main = expression(paste
("Simulated AR(2) process with ",phi[1]," = 1.2 ", phi[2]," =-0.2")));abline(a=0,b=0,lty="dashed")

0 200 400 600 800 1000

−
60

−
40

−
20

0

Simulated AR(2) process with φ1 = 1.2 φ2 =−0.2

Time

y

Autoregressive Processes
par(mfrow=c(2,1)) #Again, what can we (and can we not) infer from the ACF and PACF?
acf(ar2.2, main = expression(paste("ACF of AR(2) process with ",phi[1]," = 1.2 ", phi[2]," =-0.2")))
pacf(ar2.2, main = expression(paste("PACF of AR(2) process with ",phi[1]," = 1.2 ", phi[2]," =-0.2")))

0 5 10 15 20 25 30

0.
0

0.
4

0.
8

Lag

A
C

F

ACF of AR(2) process with φ1 = 1.2 φ2 =−0.2

0 5 10 15 20 25 30

0.
0

0.
4

0.
8

Lag

P
ar

tia
l A

C
F

PACF of AR(2) process with φ1 = 1.2 φ2 =−0.2

Autoregressive Processes

#Try to check whether process is stationary with a unit root test

#Perform a Phillips-Perron or Augmented Dickey-Fuller test
adf.test(ar2.2)

##
Augmented Dickey-Fuller Test
##
data: ar2.2
Dickey-Fuller = -2.2725, Lag order = 9, p-value = 0.463
alternative hypothesis: stationary

PP.test(ar2.2)

##
Phillips-Perron Unit Root Test
##
data: ar2.2
Dickey-Fuller = -2.0299, Truncation lag parameter = 7, p-value =
0.5657

Moving Average Processes

yt = εt−1ρ1 + εt

I Past random shocks, εt−k , influence current levels of y
I If yt is MA(1), then the stochastic component is a weighted

average of the current and previous error
I In an MA(q) process, the effects of past shocks die out after q

periods
I MA(q) processes are always stationary for finite q

Moving Average Processes

#Simulate several MA(q) processes.
#Plot the data and examine the ACFs and PACFs

#Sample from an MA(1), psi_1 = 0.5
ma1.1 <- arima.sim(list(order = c(0,0,1), ar = NULL, ma = 0.5), n=1000)

#Sample from MA(2) with psi_1 = 0.3 and psi_2=0.7
ma2.1 <- arima.sim(list(order=c(0,0,2), ar=NULL, ma=c(0.3,0.7)),n=1000)

#MA(5) with psi_1 = 0.3 and psi_2=0.7 and psi_3=0.5 and psi_4=0.7 and psi_5=1.2
ma5.1 <- arima.sim(list(order=c(0,0,5), ar=NULL, ma=c(0.3,0.7,0.5,0.7,1.2)),n=1000)

Moving Average Processes
plot(ma1.1,type="l",col="red",ylab="y",xlab="Time",main = expression(paste
("Simulated MA(1) process with ",psi[1]," = 0.50")));abline(a=0,b=0,lty="dashed")

Simulated MA(1) process with ψ1 = 0.50

Time

y

0 200 400 600 800 1000

−
4

−
2

0
2

Moving Average Processes
#Plot the ACF and PACF
par(mfrow=c(2,1))
acf(ma1.1, main = expression(paste("ACF of MA(1) process with ",psi[1]," = 0.50")))
pacf(ma1.1, main = expression(paste("PACF of MA(1) process with ",psi[1]," = 0.50")))

0 5 10 15 20 25 30

0.
0

0.
4

0.
8

Lag

A
C

F

ACF of MA(1) process with ψ1 = 0.50

0 5 10 15 20 25 30

−
0.

2
0.

0
0.

2
0.

4

Lag

P
ar

tia
l A

C
F

PACF of MA(1) process with ψ1 = 0.50

Moving Average Processes
plot(ma2.1,type="l",col="red",ylab="y",xlab="Time", main = expression(paste
("Simulated MA(2) process with ",psi[1]," = 0.3 ",psi[2]," =0.7")));abline(a=0,b=0,lty="dashed")

Simulated MA(2) process with ψ1 = 0.3 ψ2 =0.7

Time

y

0 200 400 600 800 1000

−
4

−
2

0
2

4

Moving Average Processes
par(mfrow=c(2,1)) #Plot the ACF and PACF
acf(ma2.1, main = expression(paste("ACF of MA(2) process with ",psi[1]," = 0.3 ",psi[2]," =0.7")))
pacf(ma2.1, main = expression(paste("ACF of MA(2) process with ",psi[1]," = 0.3 ",psi[2]," =0.7")))

0 5 10 15 20 25 30

0.
0

0.
4

0.
8

Lag

A
C

F

ACF of MA(2) process with ψ1 = 0.3 ψ2 =0.7

0 5 10 15 20 25 30

−
0.

3
0.

0
0.

2
0.

4

Lag

P
ar

tia
l A

C
F

ACF of MA(2) process with ψ1 = 0.3 ψ2 =0.7

Moving Average Processes
plot(ma5.1,type="l",col="red",ylab="y",xlab="Time", main = expression(paste
("Simulated MA(5) process with ",psi[1]," = 0.3 ",psi[2]," =0.7 ",
psi[3]," =0.5 ", psi[4]," =0.7 ", psi[5], " =1.2")));abline(a=0,b=0,lty="dashed")

Simulated MA(5) process with ψ1 = 0.3 ψ2 =0.7 ψ3 =0.5 ψ4 =0.7 ψ5 =1.2

Time

y

0 200 400 600 800 1000

−
6

−
4

−
2

0
2

4
6

Moving Average Processes
par(mfrow=c(3,1)) #Plot the ACF and PACF
acf(ma5.1, main = expression(paste("ACF of MA(5) process with ",
psi[1]," = 0.3 ",psi[2]," =0.7 ",psi[3]," =0.5 ", psi[4]," =0.7 ", psi[5], "=1.2")))
pacf(ma5.1, main = expression(paste("ACF of MA(5) process with ",
psi[1]," = 0.3 ",psi[2]," =0.7 ",psi[3]," =0.5 ", psi[4]," =0.7 ", psi[5], "=1.2")))

0 5 10 15 20 25 30

0.
0

0.
4

0.
8

Lag

A
C

F

ACF of MA(5) process with ψ1 = 0.3 ψ2 =0.7 ψ3 =0.5 ψ4 =0.7 ψ5=1.2

0 5 10 15 20 25 30

−
0.

2
0.

2

Lag

P
ar

tia
l A

C
F

ACF of MA(5) process with ψ1 = 0.3 ψ2 =0.7 ψ3 =0.5 ψ4 =0.7 ψ5=1.2

Moving Average Processes

What do we learn about the effect of past shocks in an MA(q)
process from the ACFs and PACFs?

How can we identify an AR versus an MA process from the ACF
and PACF.

ARMA Processes
Simulate an ARMA(1,1) process
arma1.1 <- arima.sim(list(order=c(1,0,1), ar=0.3, ma=0.5), n=1000)

par(mfrow=c(2,1)) # Plot the data
plot(arma1.1,type="l",col="red",ylab="y",xlab="Time", main = expression(

paste("Simulated ARMA(1,1) process with ",phi[1]," = 0.3", " and ", psi[1]," = 0.5")))
abline(a=0,b=0,lty="dashed")

Simulated ARMA(1,1) process with φ1 = 0.3 and ψ1 = 0.5

Time

y

0 200 400 600 800 1000

−
4

−
2

0
2

4

ARMA Processes
par(mfrow=c(3,1)) # Plot the ACF and PACF
acf(arma1.1, main = expression(paste("ACF of ARMA(1,1) process with ",
phi[1]," = 0.3", " and ", psi[1]," = 0.5")))
pacf(arma1.1, main = expression(paste("PACF of ARMA(1,1) process with ",
phi[1]," = 0.3", " and ", psi[1]," = 0.5")))

0 5 10 15 20 25 30

0.
0

0.
4

0.
8

Lag

A
C

F

ACF of ARMA(1,1) process with φ1 = 0.3 and ψ1 = 0.5

0 5 10 15 20 25 30

−
0.

2
0.

2
0.

6

Lag

P
ar

tia
l A

C
F

PACF of ARMA(1,1) process with φ1 = 0.3 and ψ1 = 0.5

